active and creative computing

The Laser DOS

for Laser 110, 210, 310
and VZ 200

Gerhard Wolf

il | My Home-Computer

Gerhard Wolf

The Laser DOS for Laser 110, 210, 310 and VZ 200

HC - My Home computer

Gerhard Wolf

The Laser DOS for Laser
110, 210, 310
and VZ 200

Structure and application of
Floppy Operating System

VOGEL BOOK PUBLISHING
WURZBURG

Published by the same author:
ROM listings for Laser 110, 210, 310 and VZ 200

(HC - My Home Computer)
ISBN 3-8023-0852-2

The BASIC interpreter in the Laser 110, 210, 310 and VZ 200

(HC - My Home Computer)
ISBN 3-8023-0874-3

CIP short title recording of the German Library

Wolt, Gerhard:

The Laser DOS for Laser 110, 210, 310 and VZ
200: structure and application floppy disk operating
systems / Gerhard Wolf. - 1st edition - Wirzburg:
Vogel, 1985.

(HC - My Home Computer)

ISBN 3-8023-0868-9

ISBN 3-8023-0868-9
1st edition. 1985
All rights, including the translation, reserved. No part of the work may be in
in any form (print, photocopy, microfilm or any other process)
Reproduced or reproduced without the written permission of the publisher
processed, duplicated or distributed using electronic systems
become. These are those expressly mentioned in 88 53, 54 UrhG
exceptions are not affected.
Printed in Germany
Copyright 1985 by Vogel-Buchverlag Wirzburg
Cover design: Bernd Schroder, Bohl
Manufacture: Alois Erdl KG, Trostberg

(00 [{0 Yo [Tox 1[0) o TR ORI 9

1. The LASER 110, 210 and 310 Disk System...........ccviiiiiiiiiiinccssnneeeeeeeneeeen 1"
COMPONENES... . e e e e e e e e e e e et e e e e e e eaeaaas 11
Basics of floppy disk storage............oooormiiee 12

T ANV . e e e e 12
The FIOPPY ISK... .. e e e e e e e e e e eaeaanans 15
(O] 0153 1 {1 o (o o PSSR 15
INSErt the diSK......oueeee e 16
A floppy disk has tWo SIAES........ccceeeiiiiiiiiiicee e 17
Handling of floppy diskS.........coooiriiiie e 19
RECOId StIUCKUIE......oeeiee s 20
The Floppy Disk CONtroller..........u.eiiieeei et 23
Installation of the floppy disk system............oommeiiiiiiiii e 24
System initialization...............oooori e 25
Technical SPeCIfiCatioNS............uuuiiiiiiee e 26

2. DOS - 0perations..........cccccciiiiiiiiiiiiccireiccesss s s s s e e e s s e e s e e e e e e e e e e ennnnns 27
Structure of the LASER-DOS..........coo e 27
Use 0f DOS COMMANGAS.........cooiiiiiiiiie et ee e e e e e e eas 28

CommaNds = SYNEAX......cooiiiiiiieiee e e e e 28
File Types and Specifications.............ooooriiiiiiiiiiiiie e 29
COMMANAS = OVEIVIEW.ttt e e e e e e e e e e et e e e e e e e aaaeaaeeeeeeaaans 31

3. The individual DOS commands............couiiiiiiiiiiinnnsssssssssssss s 35

General INSIIUCLIONS........uuiiiiiiieei e e e e e e e e e 35
INIT - Prepare a floppy diSK.........uuveeiiiiiiiie i 35
DRIVE - Drive SEleCtioN...........uuuuueiiiieee e 36
(D010 N 7] o) VAo [1< PSS 37
STATUS - Display the diskette status..............oooommiiiiiiii e, 39

File management fUNCHONS..........cccoooiiiiiiii e 40
DIR - Display of the table of contents.............cccccoeiieiiiiiiie e, 40
SAVE - Saving a BASIC program to floppy disK...........ccoeevviiiiiiiiiiiiicieeen. 41
LOAD - Loading a BASIC program from diskette.............cccooovmmiiicciieennnn. 43
RUN - Load and start a BASIC program.............cccceeeeeieiiiiieeeeeieeeeeeeennn 45
BSAVE - Saving a machine program on diskette...........cccccoovvvviiiiiiinieen. 46
BLOAD - Loading a machine program from diskette................cccccorrrriinnnnnn, 48
BRUN - Loading and starting a machine program..........ccccccooeviviiiiiiieeniennnnnn. 50
RENAME - Renaming files and programs..........cccceeeeeeeeeeiiiiccceeeeiicceee e 51
DCOPY - COPY @ PrOGraM......ceeueueeiiieeeieeeeaeeaeeeeeeeeesassasaasaaaaaeeeaaaeeeeeeeesennnnns 52
ERASE - Delete a file or program on the floppy disk............oovviiiiiiiiiinnnnnnn. 55

Storage and processing of data............oooiiiiiiiiicc 56
File organization and @CCESS.........cccuuuuiiiiiiiiiiee e 56

(O o I @ =T o 1= I 1= TSSOSO 60

PR# - Writing records to a file.........oooooiiiiiiiii s 62

IN# - Reading records from afile..........ooooiii e 65
CLOSE - Closing a data file.........cccoouuuiiiiiiiiieeee e 67

4. Error MeSSages....ccumumrimiiiiiiiiiiiiissssssssssssssssssssssss s s s s s s s s s s s s s s s s sssssssnnnnnnnnnns 69
5. Programming tipsS........cccociiiiiiiiiimiimiirrrssss s 71
6. Application example "Address Management”............cccveeeemmmmccsnnnnnnnnnnennnnnnn 75
Operation of the Program.............oeeeiiiiiiiiiie e e e e e e e 75
The program STFUCTUIE........ce e 76

7. Technical Information...........ccccimiiiiiieicccc e e 83
Structure and organization of the diskette..............ooooviiiiiiii s 83
Structure of the diskette after initialization..............cccccoeeeiiii 83

Table Of CONENES.....cooeeee e 84

The sector administration.............cooiiiiiiiiiiii e 85
Storage of programs and fil€S..........coouvviiiiiiiiiii 86
Memory resident WOTKSPACES.uuuuiiiiiiiiiiiiieiiee e 88
L@ SR (o] - TP 88

File Control BIOCKS (FCB).....ccuiiiiiiiiiiiii e 91
INPU/OULPUL BUFFEI ... 92

8. Communication between the DOS and the Floppy Disk Controller................ 95
9. The most important DOS routines and their application in machine programs........ 97
(07 | I= o (o I @ V=T V= PR 97
PWRON - TUMN ON @ MVttt a e e e e e e e e e e e 100
PWROFF - TUIN Off @ ArVe. ...t e e e e e 101
ERROR - Error RandliNg......ccoooieiiiiiiieeeeee et 102
RDMAP - Load allocation Map............uuuuuueuuiiiiiiiiiiiiiiieeieeieeeeeeeeeeeeeeeeeeeee e e e eeeeeeeeeeeeas 104
CLEAR - Deleting a sector on the floppy disK........cooovvviiiiiiiiiii 105
SVMAP - Save allocation Map t0 diSK...........uueviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 107

INIT = INItIAliZE AISK.....veeieiiieiee e aree e 108

CSI - Interpret command parameters............ueeeieiiiiiiieiiiiiieeee e 110

HEX - Conversion ASCH 1o HEX ... 111

IDAM - Look for the address mark on the diskette...........cccocociiiieiiiiiiii e 112
CREATE - Write an entry in the table of contents................ooooiiiiiii i, 113

MAP - Detect a free sector on the disk.............ooooiiiiiiiiiiiiiiis 116
SEARCH - Find file in table of contents..........cccccoiiiieeeee 117

FIND - Look for a free entry in table of contents........................ccl, 120
WRITE - Write sector t0 disK..........oooiiiiiiiii e 121

LOAD - Loading a program OF MEMOIY @rEa...........ueeeeeeeeiriurreeeraeeaasninnneeeeeeeessannenes 127

SAVE - Saving a program or memory area to floppy disK...........ccccoeeeiiiiiiiiiiiennen. 128
DRIVE - Selecting @ AriVe.......oooieiiiiiieeee et 130
WPROCT - Check write proteCtion..........cooovvviiiiiiiiiii, 130

éﬁe‘n =

0. Introduction

In order to understand and see through something, solid basic knowledge is
essential. Only then will you be able to recognize connections and use them
correctly.

This principle also applies - or even more so - to the use of a floppy disk

systems on a home computer, which one can assume is not the first

line was procured for commercial purposes, but primarily to accommodate a hobby
to indulge in or to get further training in the field of data processing.

This book deals specifically with the connection of a floppy disk system
to a LASER 110, 210, 310 or even VZ200.

It describes in detail the basics and structure of the system and deals with
detailed with the possibilities of the supplied disk drive system {Disk
Operating System = DOS).

It is intended for all floppy disk users, whether they are new to computers or more
experienced "Freak",

In the first chapters, the basics are presented and the use within the available BASIC
language is described. Then they follow byte (partially bit) precise description of the
data organization on the diskette and a detailed explanation of the diskette
possibilities for assembler and machine program - experts.

However, don't let this put you off if this is your first time using a diskette. The
structure of this book allows step-by-step climbing into matter.

After studying the basics, start using the common DOS instructions and the
program/file management by first only using the floppy disk and use it as a storage
medium for your programs.

If you are sure about this, try using your own data from BASIC programs on the
disk and then process it again.

You should only turn to the last two chapters if the DOS application in BASIC is
completely familiar to you and you have some basic knowledge of the Z80
Assembler and machine language programming skills.

-10 -

1. The LASER 110, 210 and 310 Disk System

Components

The floppy disk drive LASER DD20 was specially designed for

one of developed LASER computers 110, 210 and 310; However, it is suitable
also for the VZ200. These floppy disk drives are not compatible with others
computer systems (e.g. the LASER 2001 or LASER 30000 etc). Conversely,
other floppy disk drives are also not suitable for these computers.

The connection to the computers is established with the help of a floppy disk
controller (Floppy Disk Controller) LASER DI40, which is connected to the System
Bus off of the computers and a memory expansion can be plugged into the
"piggyback" (Figure 1.1).

Two drives can be connected to a floppy disk controller at the same time to
operate. The floppy disk controler also contains the necessary system programs
extension (Disk Operating System = DOS)

On the LASER 110 computer and on the VZ200 with internal 4K-RAM there is
required an additional memory expansion of at least 16K.

Figure 1.1 LASER 310, floppy disk controller, 16K memory expansion and drive

-11 -

Basics of floppy disk storage

The drive

There are a large number of different floppy disk systems of all kinds
manufacturers. One of the main classifications of these drives is the size of the
floppy disks. These vary from 3 1/2 inches to 5 1/4 inches to 8 inches. The floppy
disk drive LASER DD20 is a 5 1/4 inch Drive, which is very sdimilar in terms of
presentation and technical structure to TEAC drives.

Floppy disk drives work with a round, rotating disc (called floppy disk)
which, like a tape, is covered with a magnetizable layer. The data is written to these
or read from again using a read/write head.

In order to be able to access any position on this disk, the read/write head has
to be movable. For this purpose it is mounted on a rail and can be moved across
the disc.

To write or read data, the head is simply moved in or out the desired distance and
then waits for the desired data to rotate past underneath it (Figure 1.2).

For the sake of clarity and retrieval, the head has fixed grid positions, which in turn
create concentric circles of data on the disk. The various disk systems have between
35 and 88 grids. In LASER DD20 there are 40.

The resulting circles of data on the floppy disk are called tracks. Each individual track
can be accessed directly and precisely by the adjustment mechanism of the head.

Within a track, the data is recorded bit by bit one after the other, that is "sequentially"
in computer terms. As a result, after the head has been positioned over the track, it
naturally takes an average of half a turn of the disc before the desired data is
reached .

-12 -

Diskette

searched
data
searched Track

read/write head

head slide

I track selection

e

Figure 1.2 Data access on a floppy disk

The time it takes to access the data you want depends on how fast the head
can be positioned on the particular track and how fast the disk is spinning.

With the LASER DD20, the diskette is driven at 80 revolutions per minute. The
time to move the head from one track to the next is about 20 milliseconds
This results in an average access time of 500 milliseconds.

During a read/write operation, the floppy disk is held firmly like an audio tape
pressed against the read/write head. This is covered with a piece of felt

works, which presses the diskette from above onto the head via a lever macaw.
This lever arm is connected to the locking lever on the front of the drive.

If this is in a vertical position (closed), the diskette is upside down

pressed; in the horizontal position, the diskette is free (Figure 1.3).

An electronic head-loading procedure is common to many other drives
which does not exist here.

-13 -

lever arm

felt / 1

- 3

L I =3
Z Diskette
read/write head [%
-
head slide
-

Figure 1.3 Representation of a floppy disk in the drive

If you've been paying attention, you must have noticed that a floppy disk is always
written from the bottom up, which is different from how you actually think it is when
you putitin.

The drive mechanism is also connected to the locking lever. Closing the lever
(vertical) centers the disk drive hole on a cone driven by the motor via a belt. How
exactly a disk is centered on the cone is one of the critical components of the drive.

The position of a track always refers to the center of the diskette. Therefore, reliable
writing and retrieval of the data depends very much on how precisely the diskette is
centered. Unfortunately, the LASER DD20 drive tends to not press the floppy disks
precisely onto the canoes. Please note the help and control options mentioned in the
"Inserting a floppy disk" section,

To protect the floppy disks, the drive motor is only switched on immediately before
the write or Read operations - turned on and then immediately turned off again. You
will receive a visual indication of this process in the form of a lit LED (light emitting
diode) on the front of the drive. If this lights up, you should not remove or insert a
disk (see head pressing process).

-14 -

The floppy disk

Construction

Due to the fact that the disk is pressed against the read/write head, it is evident that
no solid disk can be used as the base material. A flexible, dimensionally stable
plastic material (usually a mylar sheet) is used that is coated with iron oxide. This is
where the English name "floppy disk" comes from.

For better handling and to protect the coating, the disc is packed in a rigid sleeve
with a felt-like lining.
The lining fulfills three essential tasks:
e Reducing friction between disk and case
e Dissipate static charges caused by rotation
e Absorption of dust and dirt particles that have penetrated to protect the
coating

The diskette stays in this sleeve at all times, which has three openings for handling:

e a large hole in the middle for the drive mechanism
e an oval cutout through which the head on the coating can access
e a small opening as an index hole, which is used by many drives to physically

identify the start of a track (not by the LASER DD20).

There is a small rectangular recess on the back of the case. This is device
write-protection that you can use to protect the contents of a floppy disk. If this gap is
covered with one of the adhesive strips supplied with the floppy disk packaging,
writing to this floppy disk is blocked. (Figure 1.4).

-15 -

Disk Label to identify the contents
manufacturer's label of the diskette

<— Write protect notch

Center hole

Disk surface

Index hole

Opening
for read/write head

Disk rotates in protective case

Figure 1.4 Floppy disk

The actual data carrier only consists of a very thin coating of iron oxides and is
specially treated in order to be able to remain in contact with the read/write head for
a reasonable length of time. Nevertheless, this layer is abraded over time with
constant head contact. A running time of 50 - 60 hours can serve as a guide. This
results in a fairly long service life, since the disk only runs for read/write access and
the head is not always on the same track.

Because of this abrasion, malicious gossip also refers to diskette processing as
"cutting data technology".

Insert the disk

To insert a floppy disk, the locking lever on the drive opening is set horizontally. The
floppy disk is now pushed into the drive until it stops, with the oval head cutout to the
front and normally with the label facing up.

-16 -

Turning the locking handle to the vertical position presses the drive hole on the
floppy disk centered on the drive cone of the drive and presses the floppy disk
against the read/write head.

Normally this is sufficient and the read/write operations can begin.

However, as previously mentioned, difficulties can arise when the disk is crookedly
clipped onto the cone, and unfortunately this often happens with the LASER DD20.

You should therefore make the following points a rule:
e Use only floppy disks with a reinforcement ring around the drive shaft. This
prevents premature wear on the drive hole due to crooked pinching on the
cone.

e Before inserting the disk, center it by hand as best you can in the case.

e Before writing anything to an initialized floppy disk, test it with the DIR
command.

o After reinitialization, remove the diskette, reinsert it and also test with the DIR
command.

If, despite this, the Drive keeps trying to reposition the head during a read process
(you can hear this from the slightly louder clicking noises), open the locking lever
briefly with the motor running and close it again immediately. As a rule, the disk pulls
cleanly onto the cone when the engine is running.

A floppy disk has two sides

Which diskettes do you now obtain for the LASER DD207

As mentioned, this is a 5 1/4 inch drive, so you will also need 5 1/4 inch floppy disks.
But there are also many different types, hard sectored or soft sectored, one-sided or
double-sided, with single density or with double density,

To sum it up! You will need 5 1/4 inch, soft sectored, single sided, single density

floppy disks. These bear the designation "SSSD"; this stands for "single sided, single
density".

-17 -

You can also use double-density floppy disks (SSDD). These have been tested a
litle more thoroughly, are a bit more expensive, but are not absolutely necessary for
the recording process used with the LASER DD20.

If you look closely at such a "single-sided" diskette, you will notice that both sides are
coated and that the oval opening for the head is also present on both sides of the
case.

This means that in principle you can write to both sides of the disk.

However, the LASER DD20 drive is equipped with only one read/write head. So you
had to turn the disk to bring it to the other side. If you do this and now try to write
something on this side, you will get the message "?DISK WRITE PROTECTED".
This is due to the lack of a write protect notch on the other side of the case.
Remember that a floppy disk is write-protected when you tape over the write-protect
notch.

“No write-protect notch” obviously has the same effect.

In order to be able to use the second side, only a second write protection notch is
required, which you can easily attach to the case with a hole punch. Use another
disk as a template. Don't worry about damaging the disk itself, it doesn't reach that
far into the corners of the case (Figure 1.5).

Additional /) -

[| Original
Write protect notch T — rigina

Write protect notch

Figure 1.5 Double-sided use of the floppy disk

You have now created 80,000 bytes of additional storage space per diskette.
However, you should turn the disk over if you want to read or write to the back.

-18 -

Handling of floppy disks

In order to protect your data on the floppy disks from destruction as much as
possible, you should absolutely observe the following rules:

e Always keep floppy disks in their protective cases when they are outside the
drive.

e Make sure there is no disk in the drive when turning the power on or off.

e Never bring your floppy disks close to strong magnetic fields (transformers,
motors, magnets, televisions/monitors, radios, etc.); the magnetic fields
emitted there could destroy the data content.

e Only touch the disk by the sleeve. Avoid touching the magnetizable coating.
Also try to clean the coating. Scratches are quick on the surface and you can
then forget about the disk.

e Never expose a floppy disk to direct sunlight or excessive heat.
e Avoid contaminating the coating with cigarette ash, dust or other things.

e Only use a fiber pen if you want to write on the label on the case. Ballpoint
pens or pencils could damage the coating through the case.

e Whenever possible, store floppy disks upright (like vinyl records) so that there
is no pressure on the sides.

Tips on disk labeling.

Each floppy disk has a label permanently affixed to its case. You should only use this
for important information that does not change during the life of a floppy disk. For
example, it is very helpful to give the diskettes a consecutive number for archiving.
This would have its best place there. Other useful data include your name and the
date the disk was first used.

-19 -

For information on contents, it is best to use the adhesive labels enclosed with each
pack of disks, which you can also easily change once in a while. If you do not use
them to seal any important openings, you can use the entire surface of the case for
this purpose.

Record structure

What determines the amount of data that can be stored on a floppy disk? Each
system has its own disk storage capacity; with the 5 1/4 inch floppy disks this is
possible up to 1/2 million bytes (characters) per disk side. With the LASER DD20 it
is slightly more than 80000 bytes.

Two key factors affect storage capacity. This is the number of increments with which
the head moves over the floppy disk and which is equal to the number of data tracks
to be written on the floppy disk. There are currently Known to vary between 35 and
89 on different systems.

The LASER DD20 has 40 tracks.

The second factor is the way each bit is written to disk. A distinction is made here
between “single density” (FM) and “double density” (MFM). Double recording density
also results in approximately twice the capacity. As already mentioned, the LASER
DD20 records with single density.

However, the storage capacity could be almost twice as large if the data were written
to the floppy disk exactly as they are in the memory without any further measures
being taken. With this you get a lot of data on the diskette, but you can't do much
with it anymore. How could you find out a specific piece of information in a jumble of
bits without having to go through everything from the beginning.

The benefits of disk storage are realized only when the records are organized in a
meaningful way by breaking them into small manageable chunks that have a known
location on the disk. This is the only way to take advantage of direct access. This
means nothing other than that you have to format the recordings.

Such formatting is achieved by dividing the recording on the disk within the 40

different tracks into 16 equal sections (sectors), like a pie. Each of these sectors is
separately addressable and can be treated individually.

-20 -

Each track consists of 16 sectors, in each of which 128 data bytes can be
accommodated (Figure 1.6). For the LASER DD20 this means a precise storage
capacity of

48 tracks x 16 sectors x 128 bytes = 81920 bytes

per disc side.

Figure 1.6 Arrangement of tracks and sectors on a floppy disk

However, this is not all that needs to be stored on a formatted floppy disk

Among other things, to be able to access a sector directly without any major fuss,
man must know when the information you are looking for is passing under your
head.

For this purpose, each sector receives a header, a so-called address field, in which

the sector number and, in order to recognize head alignment errors, also the track
number are noted.

-21 -

To detect recording errors within a sector, a checksum field is added at the end of the
sector.

But this alone is not enough. The head is rarely at the point where a new byte begins
on the track. As a rule, it will start reading in the middle of a byte. However, since the
data is stored consecutively bit by bit without gaps, it is impossible to identify the
beginning of a byte. That is, first of all, a start of recording is found. One speaks here
of a synchronization of the head.

For this purpose, specially defined bit sequences and recording marks are written
onto the diskette, which have an easily recognizable pattern.

There are two different types of these marks. One precedes each sector address
field, which is the "address mark"; a second precedes each data field of a sector, the
"data mark".

Each of these markers are preceded by sync bytes, and the markers are
immediately followed by the data. This allows one to clearly distinguish whether one
is in front of a data record or in front of an address field.

Further space is lost on the floppy disk due to "recording gaps" located behind each
data field of a sector. These gaps are urgently needed in order to be able to
compensate for fluctuations in the rotational speed within certain limits (Figure 1.7).

Such a basic structure of the diskette must first be created before any data is written
to it. This process is called "initialization"; a separate command is available for this.
During initialization, the subdivision into sectors is carried out and all address and
data marks are written.

Data gap Sector Data gap Sector
\ A ~ / VAN
N Y

A ; AN —
Address| Data Data field Addr‘ess Dalita Dat; field
mark | mark mark | mark
Track and Track and
Sector address Sector address

Figure 1.7 Data structure on a floppy disk

-22 -

Figure 1.6 shows that the sectors are not numbered consecutively from 1 to 16, but
in jumps on the diskette. With this little trick, it is possible to read several sectors in a
row during one revolution of the diskette and thus speed up access considerably.

After these explanations it should be understandable how the computer can find
every single sector on the diskette.

However, you usually don't want to know anything about individual sectors, you are
looking for a specific program on the diskette or a file that you have created there. As
a rule, you will also have more than one program or file stored on a diskette. How do
you get such a complete record without having to keep track of sectors yourself?

A whole track of the floppy disk was sacrificed for this purpose. On track 0, the
outermost track, there is a table of contents on the diskette, in which it is recorded
which programs and files are stored on the diskette and where they can be found.
With the DOS command "DIR" you can display this table of contents on the screen.

The last sector of this track O still has a special use. It notes whether each sector of
the diskette is free or contains valid data.

The Floppy Disk Controller

A LASER DI40 Floppy Disk Controller is required to connect a drive to a computer.

This is connected to the computer's system bus and has two 20-pin plug-in
connections on the back for connecting one or two drives.

The task of the floppy disk control is the implementation of logical orders, such as
"Read a program" in single steps for specific control of the drives, e.g. step pulses
for track adjustment, read a bit, write a bit, motor on, motor off, etc.

The floppy disk control also contains the floppy disk operating system (Disk
Operating System), DOS for short. This is stored on 8K ROMs and expands the
BASIC language range of the computer with 17 commands that are required to
operate the floppy disk station. These include “INIT" for diskette initialization,
"SAVE" and "LOAD" for saving or loading a BASIC program.

-23 -

This diskette operating system is addressed using addresses 4000 - 5FFF
(hexadecimal), which have been reserved for this expansion purpose. A 310-byte
work area is also reserved at the end of the RAM area.

Installation of the floppy disk system

In principle, all connections of electronic components should only be made or
released when the power supply is switched off. Otherwise, how quickly is an
expensive fully integrated component destroyed by voltage peaks that occur.

This also applies to the connection of the floppy disk system. So make sure that the
power supply of the computer system is turned off.

The floppy disk controller is first connected to the system bus on the back of the
computer. This is the plug strip to which a possibly existing memory extension was

connected. You can now connect it to the top of the floppy disk controller.

There are two 20-pin connector strips on the back of the floppy disk controller
to connect the drives, they are marked "D1" for drive 1 and "D2" for drive 2

If you only have one drive, connect it to "D1".

Each drive requires a separate power supply. The 5-pin DIN plug of the power
supply unit must be plugged into the corresponding socket on the back of the drive.

Now connect the power packs to a mains socket and your setup is complete.
You should make sure that there is no diskette in the drive when making or breaking

the power connection, as this could possibly destroy the data content.

You should always disconnect the power supply from your floppy disk drives if you
will not be using the system for a long period of time.

-24 -

It is advisable to procure a 220 volt plug strip with an illuminated on/off switch for all
mains connections of the computer system. This way you can interrupt the entire
power supply when you have finished your work by simply pressing a button.

Remember that the LASER 110 and VZ200 computers with 4K internal RAM must
have at least a 16K memory expansion.

f bR RaNs

Figure 1.8 Floppy disk drive, 16K memory expansion and floppy disk control

System initialization

After successful installation, turn on your computer as usual.
The computer's initialization routine automatically recognizes that a floppy disk

system is connected and briefly starts the motor of the drive connected to "D1". The
read/write head is positioned on track 0 (that's the clicking noise).

-25-

The text "BASIC V2.0" or "BASIC V1.2"

is replaced by the text “DOS BASIC V1.0”

This is your sure sign that your diskette drive system is initialized.

You now have the additional 17 diskette editing commands mentioned above.

Of course, this does not happen if you have not connected any additional memory
expansion via a LASER 110 or VZ200.

Instead, the message appears there

?INSUFFICIENT MEMORY FOR DOS”

You can work with your computer as before, but you have no way of accessing the
floppy disk.

Technical specifications

Floppy Disks - Standard 5 1/4 inch
SSSD (single sided, single density)

Recording format - single-sided
single density
40 tracks
16 sectors/track
128 bytes/sector

Capacity - 80 KB
Drive - 80 revolutions / minute
Power supply - +5V, +12V DC voltage

via separate power supply

-26 -

2. DOS - operations

Structure of the LASER-DOS

The LASER floppy disk operating system, DOS for short (Disk Operating System), is
an additional program package of approx. 8 KB that has been accommodated in
ROM modules in the housing of the Floppy Ddisk Controller.

It includes the memory area from address 16384 (4000H) to address 24575
(5FFFH), which is kept free in the LASER computers for such expansion purposes

(Figure 2.1).

0_

16384 —

24576 —
26624 —
28672 —
30720 —

31485 —

max.
65535—

BASIC
Interpreter

DOS

not used

I/0 addresses

Video RAM

BASIC

Communication Area .

free memory
for programs

310 bytes
DOS work area

—0

— 4000 H

—6000H
—6800H

1— 7000 H

— 7800 H

—7AE9 H

max.
—FFFFH

Figure 2.1 The memory allocation of the LASER 110, 210, 310 and the VZ200

-27 -

When the computer is switched on, the existence of the floppy disk operating system
is automatically recognized by the initialization routine of the standard ROM and
initialized, i.e. embedded in the BASIC interpreter's sequence routines.

The floppy disk operating system has its own command interpreter, which
independently recognizes the 17 additional input commands and initiates its own
execution routines.

The additional commands are exclusively floppy disk operations that enable you to

save and retrieve programs and also to manage your own data stocks on the floppy
disk.

Use of DOS commands

Commands - Syntax

The available commands are entered without any special identification like usual
BASIC statements.

Most of these commands can be used both in BASIC programs and in direct mode,
i.e. for immediate execution from the screen.

However, a select few are limited to one mode or another. When exactly which
command may be used is noted in the detailed descriptions.

In terms of syntax, the commands can be divided into three categories:
e Commands that do not address a file
command [parameter]
e Commands that address a file
command "filename" [,parameter]
e Commands that address two files

command "filename1","filename2"

-28-

Parameters are additional information required by some commands. If several
parameters are required, they must be separated by commas.

A small restriction arises when using it within BASIC programs.

The additional diskette commands are not recognized if they are specified directly
after a THEN or ELSE in IF statements.

They must always be entered as an independent command either at the beginning of

a line or after a command separator ":".

100 IF A=1 THEN RUN "XYZ" wrong
100 IF A=1 THEN :RUN "XYZ" correct
or

100 IF A <>1 THEN 120
110 RUN "XYZ"

File Types and Specifications

There are three different types of files in LASER-DOS:

e BASIC program files
with the label "T" as file type (= text file).

BASIC programs are stored on the diskette in this file type.

e Machine program files
with the label "B" as file type (=binary file).

Machine programs are stored on the diskette in this file type.

-29 -

e Data files
with the label "D" as file type (=data).

Your personal data is saved in this file type if you want to store it on the
diskette from a BASIC program.

BASIC and machine programs are stored on the diskette in the same format. The
different type designation is only in the table of contents and causes different
handling when loading and starting.

Data files have a completely different structure, which means that there are also
restrictions when using individual commands.

If you want to address a file on the floppy disk or create a new one, you must specify
a file name in the commands, which is entered in the table of contents of the floppy
disk.

A file name can be a maximum of eight characters long and can consist of any
sequence of letters, characters or numbers.

In the commands, the file name must always be given in quotation marks. In contrast
to other BASIC commands, the final quotation mark must not be forgotten, even if no
further information is given.

Unfortunately, LASER-DOS does not allow using a string variable instead of the file
name; this must always be specified in full directly in the command. This complicates
the flexible handling of different data files. How you can still help yourself is noted in
chapter 5 "Tips for programming"”.

-30 -

Commands - Overview

The 17 additional disk commands can be functionally divided into three groups.

General Instructions

INIT

DRIVE n

DCOPY

STATUS

Initialize a floppy disk.
This command puts the basic structure on the diskette,
i.e. it is divided into tracks and sectors.

Drive selection.
This allows you to select one of the two attachable drives
for further processing.

Copy disks.
With this command you copy the contents of one floppy
disk to another.

Output diskette status.

With "STATUS" you can display the space still available
on the diskette.

(only from DISK BASIC V 1.2)

File Management Features

DIR

SAVE "name"

LOAD "name"

Output of the table of contents.
All programs and files stored on the disk are listed on the
screen.

Save a BASIC program.
A BASIC program in memory is written to disk with
the filename "name".

Load a BASIC program.

The BASIC program marked with "name" is read from
the diskette.

-31 -

RUN "name"

BSAVE "name",aaaa,eeee

BLOAD "name"

BRUN "name"

REN "name1",”’name2”

ERA "name"

DCOPY "name"

Storage and processing of data

OPEN "name",n

PR# "name",vari[,var2...,varn]

Load and start a BASIC program.
The BASIC program marked with "name" is read
from the diskette and started immediately.

Saving a machine program
A machine program in the memory is written to the
diskette with the file name "name".

Loading a machine program.
The machine program specified with "name" is
read in from the diskette.

Loading and starting a machine program.
The machine program specified with "name" is
read in from the diskette and started.

Rename a file.
The file named "name1" will be renamed to
"name?2" on the disk.

Delete a file.
The file labeled "name" is deleted from the floppy
disk.

Copy a program.
The BASIC or machine program identified by
"name" is copied to another diskette.

Open a data file.
The data file designated with "name" is opened for
writing or reading.

Write in a data file.

The variables specified in the command are
combined into a data record and written to the data
file designated with "name".

-32 -

IN# "name",var1[,var2...,varn] Reading from a data file.
A data record is read from the data file denoted by
"name" and transferred into the specified variables.

CLOSE "name" Closing a data file.
The data file denoted by "name" is closed.

-33-

-34 -

3. The individual DOS commands

General Instructions

INIT - Prepare a floppy disk

Syntax: INIT
allowed as direct command and in program mode.

The INIT command prepares a floppy disk for storing programs or data; it will
be "initialized".

This means that the basic structure shown in the "Recording structure" section
will be produced on the diskette.

40 tracks with 16 sectors each are set up and all address and data marks are
written.

After writing, each sector is individually addressed and read.
The entire initialization process takes about 2-3 minutes.

After correct implementation, BASIC responds with READY and the next
command can be entered.

The initialization process can be aborted at any time by pressing the BREAK
button.

-35-

Warning:

With the INIT command, a non-write-protected diskette is overwritten without
any further checking, i.e. any data on it is lost.

Possible Errors:

?DISK WRITE PROTECTED The disk's write-protect notch is taped

over.

?DISK I/O ERROR An error occurred during the check read.
(faulty disk or bad centering - see
Insertion)

DRIVE - Drive selection.

Syntax: DRIVE n
n = drive number (1 or 2)

Allowed as direct command and in program mode.

The DRIVE command is used to select one of the two drives that can be
connected.

After switching on the computer and after each copy command (DCOPY),
drive 1 is automatically selected.

If you want to access drive 2, you must first switch to it with DRIVE 2.
All DOS commands, except DCOPY, are executed on the selected drive.
Therefore, make sure that you have always selected the correct drive. An

"INIT" command, e.g. on the wrong drive, inevitably leads to the destruction of
a floppy disk with important data that happens to be there.

-36 -

If you are not sure which drive is currently selected, execute a corresponding
DRIVE command (DRIVE 1 or DRIVE 2) to be safe.

The DRIVE command. only changes the DOS internal pointers, a floppy disk

access does not take place.

Possible Errors:

?FUNCTION CODE ERROR Wrong drive selection (not 1 or 2)

DCOPY - Copy disk.

Syntax: DCOPY

Allowed only as a direct command.

The DCOPY command without any further parameters results in a complete
copy of a floppy disk onto a second initialized floppy disk.

Copying is possible with one or two drives. With only one drive, however, you
will have to change the diskettes several times during the copying process.

After entering the command, you will first be prompted to select the source
and target drives.

SOURCE DISK (1/2)?
DESTINATION DISK (1/2)?
Answer each of these questions by pressing the "1" or “2” key.

Only own one drive; so answer "1" to each question.

-37 -

Command execution can be aborted with CTRL/BREAK.

After the drive has been selected, the copying process begins. The entire
RAM memory is used for this in order to have to switch between the source
and target drive as little as possible.

If you copy from one drive to a second, the entire copying process runs
automatically. If there is only one drive (from 1 to 1 or from 2 to 2), you will
have the opportunity to insert the correct diskette before each read or write

operation.

INSERT SOURCE DISKETTE
(PRESS SPACE WHEN READY)

before each reading from the source diskette, or

INSERT DESTINATION DISKETTE
(PRESS SPACE WHEN READY)

before each write to the target disk.
You can interrupt the copying process at any time by pressing the BREAK key.

The completion of the copying process is indicated with READY.

Warning:

e Note that the target disk must first be initialized.

e Data on the target diskette will be overwritten (ensure the correct drive
and diskette selection).

e The entire available RAM area is overwritten by DCOPY, i.e. data or
programs located there must first be saved or then reloaded.

e When using "Extended BASIC" the computer has to be re-initialized
(switch off/on).

e After completion, drive 1 is always selected, regardless of a previous
DRIVE command.

-38 -

Possible Errors:

?ILLEGAL DIRECT

?DISK WRITE PROTECTED

?DISK I/0 ERROR

Note:

An attempt was made to call the DCOPY
command from a program.

The target disk's write-protect notch is
taped over.

Write or read error on one of the
two disks. (defective or bad / centering)

This is one of the most important DOS commands.

As already mentioned at the beginning, no floppy disk is a reliable data
storage device in the long run (abrasion).

So make a copy of every diskette that contains programs and data that are

important to you

e after the initial creation or acquisition

e after any significant change in content.

STATUS - Display the diskette status

(only from DISK BASIC V 1.2)

Syntax: STATUS

Allowed as direct command and in program mode.

The STATUS command determines and displays the space still available on

the diskette.

-39 -

The output comes in two forms. The first line shows the number of free
sectors in the form:

nn RECORDS FREE
In the second line, the free bytes are specified in the form:

nn.nnn K BYTES FREE

Example:

STATUS
80 RECORDS FREE
10.0 KBYTES FREE

Possible Errors:

?DISK I/O ERROR The occupancy overview of the diskette
could not be read correctly.

File management functions

DIR - Display of the table of contents

Syntax: DIR
Allowed as direct command and in program mode.

The DIR command displays a directory of all programs and files stored on the
diskette on the screen.

-40 -

The listing includes file type and file name.

Possible file types:

T = BASIC - program (text file)
B = machine program (binary file)
D = data file

Example:

DIR
B:SCHACH
B:KALACH
T:AB.LAND
T:ANSCHR
D:KARTEI
READY

The disk contains:

e two machine programs, SCHACH and KALAH,
e two BASIC programs, AB.LAND and ANSCHR and
e a data file called KARTEI.

The listing can be stopped by pressing the space bar (SPACE) and continued
with the same key.

Possible Errors:

?DISK I/O0 ERROR The table of contents of the diskette
could not be read properly.

SAVE - Saving a BASIC program to floppy disk

Syntax: SAVE “name”
‘name” - program name with a maximum of 8 characters,

enclosed in quotation marks.

Allowed as direct command and in program mode.

-41 -

A BASIC program in memory is saved on the floppy disk under the file name
"name".

The program is given the type designation "T" (text file).

In direct mode, the completion of the storage process is indicated with
READY.

In program mode, the program is continued with the command following
"SAVE".

Example:

SAVE “KARTEI”

transfers a BASIC program in memory to the floppy disk under the
name "KARTEI".

Possible Errors:

?SYNTAX ERROR e no file name specified
Filename not in quotes
No end of line (RETURN) or command
separator ":" after the file name.

?DISK WRITE PROTECTED The disk's write-protect notch is
taped over.

?FILE ALREADY EXISTS A file with the same name already exists on
the diskette.

?DIRECTORY FULL There is no more space in the table of
contents (maximum 120 entries).

-42 -

?DISK FULL There are not enough free sectors on the
diskette for the program.

?DISK 1/0 ERROR An error occurred while writing or reading
the floppy disk.

The writing process can be aborted at any time by pressing the BREAK key.
However, depending on when the key is pressed, the entry in the table of contents is
not always deleted (error in DOS).

In order to ensure problem-free diskette management, you should therefore check
the table of contents with DIR in such a case and, if necessary, delete the file
manually with ERA.

LOAD - Loading a BASIC program from diskette

Syntax: LOAD “name”
‘name” - program name with a maximum of 8 characters,
enclosed in quotation marks.

Allowed as direct command and in program mode.

A BASIC program saved on the diskette with the file name "name" is loaded
into memory.

The completion of the storage process is indicated with READY.

Example:

LOAD “KFZ”

Transfers the BASIC program KFZ from the diskette to the memory.

-43 -

You can then look at a BASIC program loaded in this way with LIST and modify it if
necessary.

Warning:

Before writing a modified program back to the diskette, you must either first delete
the program on it with "ERA" or give the modified program a different name.

Example:

LOAD “XYZ”
>READY
LIST

modify
ERA “XYZ”
>READY
SAVE “XYZ”

After the program has been read in, direct mode (BASIC warm start) is always
accessed, regardless of whether the call was made directly or from within a program.

The reading process can be aborted at any time by pressing the BREAK key.

Possible Errors:

?SYNTAX ERROR e no file name specified
Filename not in quotes
No end of line (RETURN) or command
separator ":" after the file name.

?FILE NOT FOUND No program with the specified name could
be found on the diskette..

-44 -

?FILE TYPE MISMATCH A file with the same name was found on the
diskette, but this is not a BASIC program

(file type = T).

?DISK I/O ERROR An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

RUN - Load and start a BASIC program

Syntax: RUN “name”
‘name” - program name with a maximum of 8 characters,
enclosed in quotation marks.
Allowed as direct command and in program mode.
A BASIC program saved under "name" on the diskette is loaded into memory

and executed.

Example:

RUN “GRAFIK”

The BASIC program "GRAFIK" is loaded and executed.

Possible Errors:

?SYNTAX ERROR e no file name specified
Filename not in quotes
No end of line (RETURN) or command
separator ":" after the file name.

-45 -

?FILE NOT FOUND No program with the specified name could
be found on the diskette..

?FILE TYPE MISMATCH A file with the same name was found on the
diskette, but this is not a BASIC program

(file type = T).

?DISK I/O ERROR An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

BSAVE - Saving a machine program on diskette

Syntax: BSAVE “name”,aaaa,eeee

‘name” - program name with a maximum of 8 characters,
enclosed in quotation marks.

aaaa - Program start address, 4 digits;
in hexadecimal notation.

eeee - Program end address, 4 digits;
in hexadecimal notation.

Allowed as direct command and in program mode.

A machine program in memory is written to the floppy disk from address
"aaaa" to address "eeee" with the file name "name".

It receives the type designation "B" (binary file) in the table of contents.
In direct mode, the completion of the storage process is indicated with

READY. In program mode, the program is continued with the command
following BSAVE.

-46 -

Instead of a machine program, this command can also be used to transfer any
memory area to the diskette and then load it again with BLOAD.

Only BRUN requires an executable machine program as this is started

immediately after loading.

Example:

BSAVE “BOWLING”,8000,94FF

The "BOWLING" machine program is transferred to the diskette from
address 8000H to address 94FFH.

Possible Errors:

?SYNTAX ERROR

?DISK WRITE PROTECTED

?FILE ALREADY EXISTS

?DIRECTORY FULL

?DISK FULL

?DISK I/O ERROR

no file name specified

Filename not in quotes

Start and/or end address missing

Start or end address not 4 digits
hexadecimal (0~F)

e parameters not separated by comma,

The disk's write-protect notch is taped over.

A file with the same name already exists on
the diskette.

There is no more space in the table of
contents (maximum 128 entries).

There are not enough free sectors on the
diskette for the program.

An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

-47 -

The writing process can be aborted at any time by pressing the BREAK button.
However, depending on when the key is pressed, the entry in the table of contents is
not always deleted (error in DOS).

In order to ensure problem-free diskette management, you should therefore check
the table of contents with DIR in such a case and, if necessary, delete the file
manually with ERA.

BLOAD - Loading a machine program from diskette

Syntax: BLOAD “name”
‘name” - program name with a maximum of 8 characters,
enclosed in quotation marks.

Allowed as direct command and in program mode.

A machine program stored on the diskette with the file name "name" is loaded
into the memory.

With a direct command, the end of the loading process is indicated with

READY, in program mode the program is continued with the command
following BLOAD.

Example:

BLOAD “UPR01”
Machine program UPRO1 is loaded from the diskette.

The command is particularly suitable for loading machine program routines
saved with BSAVE from a BASIC program and calling them as subroutines via
USR.

-48 -

Example:

220 BLOAD “UPR01”: ‘LOAD SUBPROGRAM

230 POKE 30862,0: ‘'LSB START ADDRESS =00
240 POKE 30863,176: ‘MSB START ADDRESS = B0
250 A = USR(0): ‘CALL SUBROUTINE

The subprogram UPRO1 is to be loaded from diskette and called at address

BOOOH.

Possible Errors:

?SYNTAX ERROR

?FILE NOT FOUND

?FILE TYPE MISMATCH

?DISK I/O ERROR

no file name specified
Filename not in quotes
No end of line (RETURN) or command

separator ":" after the file name.

No program with the specified name could
be found on the diskette..

A file with the same name was found on the
diskette, but this is not a machine program
(file type = B).

An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

-49-

BRUN - Loading and starting a machine program

Syntax: BRUN “name”

‘name” - program name with a maximum of 8 characters,
enclosed in quotation marks.

Allowed as direct command and in program mode.

A machine program stored on the floppy disk under the file name "name" is
loaded into memory and executed.

The program starts exclusively at the program start address (see BSAVE),

Example:

BRUN “FIFFI”
The "FIFFI" machine program is loaded and started.

Possible Errors:

?SYNTAX ERROR e no file name specified
Filename not in quotes
No end of line (RETURN) or command

separator ":" after the file name.

?FILE NOT FOUND No program with the specified name could
be found on the diskette..

?FILE TYPE MISMATCH A file with the same name was found on the
diskette, but this is not a machine program
(file type = B).

-50 -

?DISK I/O ERROR An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

RENAME - Renaming files and programs

Syntax: REN “name1”,”’name2”

“‘name1” - File/program name, old, max. 8 characters,
enclosed in quotation marks.

“‘name?2” - File/program name, new, max. 8 characters,
enclosed in quotation marks.

Allowed as direct command and in program mode.

A program or file on the disk under the name "name1" is renamed "name2".

Example:

REN “OTTO”,”ANTON”

The "OTTO" file is renamed to "ANTON".

Possible Errors:

?SYNTAX ERROR e "name1" and/or "name2" are missing.
e "name1" or "name2 not in quotes
e names not separated by commas

-51 -

?DISK WRITE PROTECTED The disk's write-protect notch is taped over.

?FILE NOT FOUND The file named "name1" is not on the disk.

?FILE ALREADY EXISTS The file named "name2" already exists on
the diskette.

?DISK I/O ERROR An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

DCOPY - Copy a program

Syntax: DCOPY “name”

‘name” - program name with a maximum of 8 characters,
enclosed in quotation marks.

Only permitted as a direct command,.

The DCOPY command with specification of a program name causes this
program to be copied from one diskette to another.

After entering the command, you will first be prompted to specify the source
and target drives.

SOURCE DISK (1/2)?
DESTINATION DISK (1/2)?

Answer each of these two questions by pressing the '1' or '2' key.
If you only have one drive, answer '1' to each question.

You can abort command execution with CTRL/BREAK.

-52 -

After selecting the drive, the copying process begins. The copying takes place
by calling the LOAD and SAVE routines, as they are also used with LOAD and
BLOAD, or with SAVE and BSAVE.

For this reason, it is not possible to copy a single data file (file type = D) with
the DCOPY command, as this is structured differently.

If you are copying to only one drive (SOURCE DISK = DESTINATION DISK),
you will be prompted before loading

INSERT SOURCE DISKETTE
(PRESS SPACE WHEN READY)

and before writing the prompt

INSERT DESTINATION DISKETTE
(PRESS SPACE WHEN READY)

If you have inserted the correct diskette, press the spacebar to continue the
function.

You can interrupt the copying process at any time with the BREAK button. If
you do this during the writing process, please note the information on SAVE
and BSAVE.

When copying is complete, the message READY appears.

Example: ((system outputs are marked with '>')

>READY

DCOPY “EMIL”

>SOURCE DISK (1/2)?

1

>DESTINATION DISK (1/2)?

1

>INSERT SOURCE DISKETTE
>(PRESS SPACE WHEN READY)
spacebar

loading process

-53 -

>INSERT DESTINATION DISKETTE
>(PRESS SPACE WHEN READY)

spacebar
saving process

>READY

The program to be copied overwrites its original memory area in RAM.

After copying is complete, drive 1 is always selected, regardless of a previous DRIVE

command.

Possible Errors:

?ILLEGAL DIRECT

?SYNTAX ERROR

?FILE NOT FOUND

?FILE TYPE MISMATCH

?DISK WRITE PROTECTED

?FILE ALREADY EXISTS

?DIRECTORY FULL

?DISK FULL

An attempt was made to call the DCOPY
command from a program.

no file name specified
Filename not in quotes
No end of line (RETURN) or command

separator ":" after the file name.

No program with the specified name could
be found on the diskette..

An attempt was made to copy a data file.

The target disk's write-protect notch is taped
over.

A program named "name" already exists on
the target disk.

The table of contents of the destination disk
is full. The program can no longer be
entered (max. 128 files/programs).

There is no more space on the destination
disk.

-54 -

?DISK I/O ERROR An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

ERASE - Delete a file or program on the floppy disk.

Syntax: ERA “name”

“‘name” - File/program name, max. 8 characters,
enclosed in quotation marks.

Allowed as direct command and in program mode.
A program or data file designated by "name" is deleted from the diskette.
To do this, the entry in the table of contents is deleted and all sectors occupied

by this file are released.

Example:

ERA “DAT1”

The file named "DAT1" will be deleted.

Possible Errors:

?SYNTAX ERROR e no file name specified
e Filename not in quotes

?DISK WRITE PROTECTED The target disk's write-protect notch is taped

over.

?FILE NOT FOUND No program with the specified name could
be found on the diskette..

?DISK I/O ERROR An error occurred while reading from the
floppy disk. (faulty disk or centering
problems)

-b5.

Storage and processing of data
File organization and access

The LASER-DOS allows you to save data on the diskette from a BASIC program and
then process them again.

This data is stored in special data files with the type code "D".

The storage form offered is "sequential". Sequential means that the data in the file is
stored one after the other, like on a cassette. Reading or writing data always begins
at the beginning of the file, further read and write calls access the subsequent
positions of the file.

In contrast to this is the "direct" type of access (random access), with which any data
in a file can be accessed directly. Unfortunately, the LASER-DOS does not support
this type of memory as standard. However, it can easily be reproduced with a little
knowledge of assembler/machine language and the help routines described in the
last chapter.

Sequential access is data flow oriented, i.e. the number of characters for a write or
read process can vary. This is also referred to as data records of variable length,
where a data record is the sum of the data elements that are written to or read from
the diskette with a write or read call.

Sequential files represent the simplest form of data storage and retrieval. They are
ideal for storing raw data without wasting a lot of space between each data element.
Data is read back in the same order as it was written.

In order to be able to access a data file, it must first be opened. A special OPEN call
is available for this purpose. With the opening you also specify the type of access,
whether data should be written or read.

After completing the data manipulations, each data file should be marked with a
CLOSE

call to be closed.

When editing data files, there are a few important points to keep in mind:

-56 -

If a file that does not exist is opened for writing, it is created anew and
positioned at the start of the file.

If an existing file is opened for writing, it is positioned at the end of the file, i.e.
the file is extended with the following write calls.

If you want to rewrite an existing file from the beginning, you must first delete
it.

After opening, reading always begins at the beginning of the file. If you are
looking for data within a file, you must read over the preceding ones.

To update a sequential file, read in the source file and write the updated data
to a new file.

When reading the file, the exact structure of the data record to be read must
be known. This does not refer to the length of the sentence and the individual
elements; However, you must know the number of elements and the format of
each element (string, integer, etc.) and provide an appropriate receiving field
for each element.

Within the file, the data is stored exclusively in ASCII format. The individual
elements are separated by commas. For example, the number 1.2345 takes
up 8 bytes of storage, including a space for the sign at the beginning and
another space at the end. The text "ROBERT MAIER" takes up 12 bytes on
the disk.

A data record should not be longer than 200 bytes, otherwise problems with
the internal data structure of BASIC will occur when reading.

The 200 bytes count

- the individual characters

- the commas as element separators

- for numbers, the sign and an additional space

- a final RETURN (CR) at the end of the sentence

A maximum of two files can be opened at the same time, whereby the types
of access can be the same or mixed.

-57 -

Warning:
If your system reports DISK-BASIC V1.0, work with one file at a time to be on

the safe side. The management of two open files is still incorrect there and
can lead to significant data loss.

e The DOS does not tell you when the end of the file is reached when reading,

you have to determine this yourself, for example by writing a specific end
identifier as the last in the file.

Example of sequential output:

We want to store a table of English to metric conversion data.

English unit Metric unit
1 Inch 2.54001cm

1 Mile 1.60935 km
1 Acre 4046.86 gm
1 Cubic Inch 0.01639 Itr

1 U.S. Gallon 3.785 Itr

1 Liquid Quart 0.9463 Itr

1 Ibs 0.45359 kg

The data should be structured as follows on the diskette and entered in a data file
called "ENG>MET":

"English unit -> Metric unit” , conversion factor
e.g. "IN->CM", 2.54001
The following program creates such a file.

10 OPEN “ENG>MET”,1

20FOR 1% =1TO7

30 READ ES$,F

40 PR# “ENG>MET”,ES$,F

50 NEXT

60 CLOSE “ENG>MET”

70 DATA “IN->CM”,2.54001,”MI->KM”,1.60935,”ACRE->QKM”,4046.86E-6

- 58 -

80 DATA “CU.IN->LTR”,1.638716E-2,”GAL->LTR”,3.785
90 DATA “LIQ.QT->LTR”,0.9463,”LB->KG”,0.45359
100 END

Line 10 creates the file "ENG>MET" and opens it for writing.
In line 40, one data record is written to the file.
Line 50 closes the "ENG>MET” file again.

Example of sequential input:

The following program reads the "ENG>MET" file into two parallel matrices and then
asks about conversion problems.

10 CLEAR 1000

20 DIM E$(6),F(6)

30 OPEN “ENG>MET”,0

40 FOR 1% =0 TO 6

50 IN# “ENG>MET”,E$(1%),F(1%)

60 NEXT

70 CLOSE “ENG>MET”

100 CLS: PRINT “ CONVERSION ENGLISH=>METRIC”
110 PRINT: FOR 1%=0 TO 6

120 PRINT TAB(4); USING “(##) % % “;1%,E$(1%)
130 NEXT

140 PRINT @320, "WHICH CONVERSION (0-6)";

150 INPUT W%: IF W% > 6 THEN 190

160 INPUT "ENGLISH VALUE" ;V

170 PRINT "THE METRIC VALUE IS" V*F(W%)

180 INPUT "CONTINUE WITH <RETURN>";X

190 GOTO 100

Line 30 opens the file for input. Reading begins at the beginning of the file.

In line 50, a data set with the elements E$ (unit) and F (factor) is read and distributed
to the matrices.

Note that the variable list when reading in is the same as the write command in the
previous program.

In line 70 the file is closed again.

-59.-

Updating a file

If you want to add one or more records to an existing file, open this file for writing
and simply enter additional data records with PR#, which will be appended to the
existing database.

If you want to change data within a file, we recommend the following procedure (not
with DISK BASIC V1.0).

. Open the file to be edited for reading.

. Open a second new file for writing

. Read a record and edit the data

. Write the record to the new file

. Repeat points 3 and 4 to the end of the file
. Close both files

. Delete the source file

. Rename the new file to the original file

0O ~NO OB WN -

With DISK BASIC V1.0, the only solution is to read the file to be processed
completely in the memory, process it and write it completely into the new file.
However, this limits the size of the file to the available memory,

OPEN - Open afile.

Syntax: OPEN “name”,n

‘name” - File/program name, max. 8 characters,
enclosed in quotation marks.

n - type of access
0 - Read
1 - Write

Permitted only in program mode.

The OPEN command opens a data file (type = D) for writing or reading.

-60 -

The OPEN command creates a file control block internally for each open file,
which contains function codes and pointers.

Furthermore, the following is positioned on the data according to the access
code:

e When reading, always at the beginning of the file
e When writing to a new file, to the beginning of the file
e When writing to an existing file at the end of the file,

Since there are only two file control blocks in the system, only two files can be
open at a time. The type of access is irrelevant, both can be opened for
writing, both for reading or one for reading and the second for writing (see
restriction DISK BASIC V1.0 on the previous pages).

Example:
OPEN “TEST”,0
The "TEST' data file is opened for reading.

A data file can only be opened once at a time. Attempting to open the same
file again results in an error message.

Since the file control blocks (FCB) are located outside the BASIC programs, a
file remains open if the calling program was aborted before the CLOSE call
due to an error or by pressing the BREAK key and is perhaps no longer in
memory. Such a file can no longer be opened without further ado.

If it happen that a BASIC program is aborted without properly closing its files,
you should do so with a direct command (CLOSE "filename").

Possible Errors:

?ILLEGAL DIRECT An attempt was made to execute the OPEN
command in direct mode.

-61 -

?SYNTAX ERROR

?FILE ALREADY OPEN

?FILE TYPE MISMATCH

?FILE NOT FOUND

?DISK BUFFER FULL

?DISK I/O ERROR

PR# - Writing records to a file.

Syntax: PR# “name”,item list

one or both parameters are missing
no comma as separator

filename not in quotes

access type not 0 or 1

File is already open, if necessary close it
with the direct command "CLOSE".

The file addressed in the OPEN command is
not a data file

A file to be opened for reading does not exist
on the diskette.

Two files are already open and no more file
control block is available.

An error occurred while reading from the
floppy disk.

“‘name” - File/program name, max. 8 characters,
enclosed in quotation marks.

item list - List of variables and values to be written to the file.
The individual elements are to be separated by commas

Permitted only in program mode.

Assembles a data record from the values in the element list and causes it to

be written to the data file.

-62 -

This must first have been opened for writing with an OPEN command.

Example:

200 A1 = -40.456: B$ = “STRING-VALUE”
210 OPEN “TEST” 1

220 PR# “TEST”,A1,B$,”THE VAR’S”
230 CLOSE “TEST”

240 END

After opening the "TEST" file in line 210, a data record is compiled in line 220
and written to this file.

The data record contains the current values of Al and B$ and also the
character string "THE VAR'S". The values can later be read in again with an
IN# command.

It must be ensured that the element list of the IN# command is the same as
that of the PR# command with regard to the number and type of elements.

The values represented by the item list should not exceed 200 characters in
total. In addition to the values themselves, this also includes all separators
(commas) between the values, in the case of numeric values the sign position
and a trailing space and finally the end of data record identifier (CR).

The record in the previous example would be 31 characters long
-40,456 ,STRING VALUE, THAT'S IT

Unfortunately, when creating the element list, one often does not know exactly
how large the individual variables will be at the time of storage. Then only
careful estimation helps. Always stay on the safe side and, if in doubt, split
your element list into several PR# commands.

Unfortunately, the PR# command does not notice when a data record is too
long. This is simply written to the diskette in its entirety. Reading in with the
IN# command then causes problems, whereby in the simplest case "only"
data is lost.

-63 -

Writing a record does not necessarily result in a physical write to the file. Only
full sectors are written to the diskette. The data of the PR# command are
collected in an internal buffer with size of a sector. Whenever the buffer is full,
it is transferred to a free sector on the disk and a new free sector is then
determined. This writing of a sector can be done in the middle of a PR#
command; multiple PR# commands may also be required to fill a sector.

A data record to be written with PR# is written regardless of sector
boundaries. The sector is also referred to as a physical unit, while a data

record represents a logical unit.

Possible Errors:

?ILLEGAL DIRECT An attempt was made to execute the PR#
command in direct mode.

?SYNTAX ERROR e no file name specified

e Filename not in quotes

e no itemin the list

e Nno comma as separator
?FILE NOT OPEN File was not previously opened.
?ILLEGAL WRITE The file has been opened for reading.

?DISK WRITE PROTECTED The disk's write-protect notch is taped over.

?DISK FULL No more free sectors could be found on the
diskette.
?DISK 1/0 ERROR An error occurred while reading or writing to

the diskette.

Warning:
If one of these errors occurs, the program is terminated with the

corresponding error message. Please note that this file was not closed
afterwards, you should do this manually.

-64 -

IN# - Reading records from a file.

Syntax: IN# “name”,item list

‘name” - File/program name, max. 8 characters,
enclosed in quotation marks.

item list - List of variables and values to be written to the file.
The individual elements are to be separated by commas

Permitted only in program mode.
IN# reads a record from the specified file and assigns the elements of that

record to the specified variables.

The file must first have been opened for reading with an OPEN command.

Example:

200 OPEN “TEST”,0
210 IN# “TEST”,X,A$,B$
220 CLOSE “TEST”

This example refers to the data set created in the example of the PR#
command in the "TEST" file. The data stored there are assigned to the
variables of the IN# command in sequence.

After executing line 210, the variables contain the following values:
X =-40.456

A$ = “STRING-VALUE”
B$ = “THE VAR'S”

-65 -

The element list of the IN# command must correspond to that of the PR#
command with regard to the number and type of variables. Likewise, the order
must be observed for different types, the naming is irrelevant,

If records are read continuously from a file with IN#, it is difficult to recognize
the end of the file at the right time. There is no special "END OF FILE”
identifier for LASER-DOS.

There are various possible solutions:

e the number of records is known, they are counted with a counter in the
reading program,

e a second small file contains the sentence counter for the main file.

e A short label consisting of only one alphanumeric character (e.g. PR#
"name", "A") is written in front of each correct record.

In the reading program, this identifier is first read before each reading
of a data record (e.g., IN# “name”, A$) If the receiving string variable is

then empty, the end of the file has been reached.

Possible Errors:

?ILLEGAL DIRECT An attempt was made to execute the IR#
command in direct mode.

?SYNTAX ERROR e no file name specified
e Filename not in quotes
e no item in the list
e no comma as separator
?FILE NOT OPEN File was not previously opened.
?ILLEGAL WRITE The file has been opened for reading.
?ILLEGAL READ The file was opened for writing.
?DISK I/O ERROR An error occurred while reading or writing to

the diskette.

- 66 -

?REDO

?EXTRA IGNORED

??

Warning:

The type of one of the specified variables
does not match the data read in from the
diskette.

The program continues to run, the variable
remains empty.

In the variable list of the IN# command
fewer variables are given than values

are present in the data set, the

numbered values are ignored, the program
continues.

The variable list contains more variables
than there are values in the data set. The
frogram now expects the missing values to
be entered via the keyboard.

If one of these errors occurs (except REDO, EXTRA IGNORED and ?7?), the
program is terminated after the corresponding message has been output.
Please note that this file was not closed, you should do this manually.

CLOSE - Closing a data file.

Syntax: CLOSE “name”

‘name” - File/program name, max. 8 characters,

enclosed in quotation marks.

Allowed as direct command and in program mode.

A previously processed data file is closed with the CLOSE command..

-67 -

If a file is open for reading or an inactive file (i.e. the last file access was not to
this file) or in direct mode, only the file control block (FCB = File Control Block)
is released again. Disk access does not take place.

However, if the CLOSE command is given in program mode and the file to be
closed is open for writing and is currently active, the last sector in the buffer is

also written back to the diskette so that no data is lost.

It is good programmer practice to close any open file after use. However, it is
essential for output files, unless you accept the possibility of data loss.

Example:

CLOSE “MAILBOX”

The "MAILBOX" data file is closed.
It is always necessary to close and reopen a file if you want to change the
type of access (e.g. from writing to reading).
If the file to be closed is not open at all, i.e. there is no open file control block
for this file, the CLOSE command is skipped without any error message. This

is especially useful for closing all files used in a program prophylactically at
the end without checking which ones are currently open.

Possible Errors:

?SYNTAX ERROR e no file name specified
e Filename not in quotes

?DISK WRITE PROTECTED The disk's write-protect notch is taped over.

?DISK I/O ERROR An error occurred while reading or writing to
the diskette.

-68 -

4. Error Messages

Summarized list of possible DOS error messages and their probable causes.

?DIRECTORY FULL

?DISK BUFFER FULL

?DISK FULL

?DISK I/0 ERROR

?DISK WRITE PROTECTED

?FILE ALREADY EXISTS

?FILE ALREADY OPEN

?FILE NOT FOUND

?FILE NOT OPEN

An attempt was made to save a program or
a file on the floppy disk whose directory
already contains 120 entries.

An attempt was made to open a file with
OPEN, although two files are already open.

There is no more free sector on the floppy
disk.

An error occurred while writing or reading.
e.g. address stamp not found; checksum
wrong efc.

An attempt was made to write to a floppy
disk with the write-protect notch taped over.

A program to be stored on the diskette is
already there.

An OPEN call was issued to a file that is
already open.

A file addressed for reading or a program to
be loaded is not present on the diskette.

An attempt was made to use IN# or PR# to
change a file that has not previously been
opened.

-69 -

?FILE TYPE MISMATCH

?ILLEGAL DIRECT

?ILLEGAL READ

?ILLEGAL WRITE

?INSUFFICIENT MEMORY FOR DOS

An attempt was made to access a file
with the wrong type.

LOAD/RUN = file type not equal to "T"
BLOAD/BRUN - file type not equal to "B"
OPEN - file type not equal to "D"
DCOPY - file type="D"

An attempt was made to use a DCOPY
command in program mode, or an
OPEN, IN#, or PR# command in direct
mode.

The IN# command was issued for a file
that is open for writing.

The PR# command was issued for a file
that is open for reading.

An attempt was made to initialize the
DOS system on a LASER 110 or VZ200
without memory expansion.

-70 -

5. Programming tips

1. As already mentioned in the description of the last sections, there is the
problem that when a program is aborted due to an error or the BREAK key,
not all files are necessarily closed correctly.

A restart of such a program after error correction or similar usually leads to the
message "FILE ALREADY OPEN".

You can now manually complete these files in direct mode if their names are
known.

However, this is not sufficient for new files to be created in a program. Such
files must then also be deleted, otherwise the file will be updated when OPEN
is repeated and you will have your data in the file more than once.

In all these cases, the following procedure is recommended:
At the end of all programs under development you define a block with
CLOSE calls and possibly also delete calls for all files addressed in the

program. If the program is interrupted as mentioned above, simply call
this routine with RUN line number.

Example:

In a program, you edit the three files DAT1, DAT2 for reading, and
DAT3 is recreated.

own program

4800 END

20000 CLOSE “DAT1”
20010 CLOSE “DAT2”
20020 CLOSE “DAT3”
20030 ERA “DAT3”
20040 END

-71 -

2.

If a program is interrupted, you can use RUN 20000 to clean up your
files and restart your program without any problems after correction.

It is often necessary that a file must be present on the diskette when the
program is started (see program example "Address Directory"), although it
does not contain any data afterwards.
Apply a similar technique to chen by defining the following lines at the end of
the actual program:
own program

6000 END

10000 OPEN “MAILBOX”,1

10010 CLOSE “MAILBOX”

10020 END
With RUN 10000 you create an empty file 'MAILBOX' on the floppy disk.

A bottleneck of LASER-DOS is that the file names must be specified directly in
the commands and cannot be replaced by variables.

How can you still edit different files in one program?

Knowledge of the BASIC program structure is required to understand the
following solution.

Here are the most important points:

e The start address of a BASIC program can be found in memory
locations 78A4H and 78A5H (30884 and 30885 decimal).

e A BASIC line has the following structure:
2 bytes - pointer to the next line
2 bytes - line number

n bytes - line text
1 byte - line end identifier (X'00")

-72 -

BASIC keywords contained in line text, apart from the DOS commands,
are represented in the text as one-character "TOKENS".

The space inserted between the line number and the line text in a
program listing is not part of the line.

If these conditions are taken into account, the example below can be easily
understood and reproduced.

The main point of this example is that all file calls are located at the beginning
of the program, so they can be counted more easily and are not shifted when
the program is changed later.

Example:

After selection by the user, a program evaluates one of three possible files
DAT1, DAT2 or DAT3.

10 GOTO 100

20 OPEN “DAT1”,0:RETURN

30 IN# “DAT1”,A$.B$,C:RETURN
40 CLOSE “DAT1”:RETURN

100 CLEAR 1000
110 A=PEEK(30885)*256+PEEK(30884)
120 CLS

130 INPUT “FILE VERSION (1-3)”;X$
140 IF X$<”1” OR X$>”"3” THEN 120
150 POKE A+23,ASC(X$)

160 POKE A+42,ASC(X$)

170 POKE A+69,ASC(X$)

180 GOSUB 20

190 GOSUB 30

edit the data, if necessary several records
read with GOSUB 30

400 GOSUB 40
410 END

Line 10 jumps to the actual beginning of the program.

In lines 20, 30 and 40 the file calls are defined as individual subroutines.

-73 -

The program start address is determined in line 110.
Lines 130 and 140 ask for the desired file version.

If correct, this is transferred to the file names of lines 20, 30 and 40 in lines
150, 160 and 170.

Lines 180, 190 and 400 indicate file processing by calling subroutines as an
example.

-74 -

6. Application example "Address Management"

The "address management" program shown on the following pages shows a typical
application example for diskette processing with the LASER-DOS.

It allows the entry, storage and editing of up to 100 addresses.
The addresses are stored on the diskette in a "MAILBOX" file.

The processing procedure was selected with regard to the weaknesses of DOS
BASIC 1.0 in such a way that when the program starts the file content is read
completely into the memory and at the end of the processing it is written back
completely to the diskette due to changes.

Operation of the program

The program is loaded and started with RUN "ANSCHR". Immediately after the start,
the content of the "MAILROX" file is transferred to the program-internal matrices.
This file must be on the diskette, otherwise the program is terminated after an error
message is output.

After the loading process, the menu is displayed
1
2) UPDATE ENTRY

3) DELETE ENTRY

(1) NEW ENTRY
(2)
{3)
(4) READ ENTRY
o)
(6)

5) LIST SORTED
6) EXIT PROGRAM

You select one of these functions by entering the corresponding number.

After completing functions 1 to 5, which in my opinion are self-explanatory, the
program returns to the menu output.

After completing function 6, the program is terminated.
If the data content was changed during the program run, the addresses are sorted

alphabetically by last name and first name, if necessary, before functions 5 and 6 are
executed.

-75 -

In function 6, the data are written back to the diskette when changes have been
made.

When starting the program, it expects the MAILBOX file to be present. If you are
using the program for the first time, no such data is present on the diskette. You can
create an empty "MAILBOX" file on the diskette with the following procedure:

LOAD "ACCESS"
RUN 3000
RUN

This creates a file "MAILBOX" and then starts the actual main program.

The program Structure

The program has a modular structure, i.e. each function is implemented in a
self-contained routine.

After starting, the "MAILBOX" file is first read in (lines 220 - 280).
Note that for this file a solution was chosen for the end identifier, in which a label with
a short alphanum. text is saved. The label is read and evaluated in lines 240 and

250, the "real" record is read in line 280.

The individual program routines for address processing (functions 1-3) will not be
discussed in detail. These have nothing to do directly with the DOS.

You can analyze the routines yourself if necessary.
Just a hint. A "SHELL" SORT procedure was used to sort the addresses (lines 2200
- 2390), which is somewhat more complicated in terms of structure, but considerably

better in terms of runtime than the simple and usual "BUBBLE" SORT.

The data is written back to the diskette in lines 1800 to 1920.

-76 -

For security reasons, the data is first written to a temporary "TEMP" file. The old
"MAILBOX" file is then deleted and the temporary file is then renamed "MAILBOX".

Dis has the advantage that if errors occur during writing (DISK FULL or similar), at
least the old file is still available.

If you are interested in the program, simply type it in and save it on the floppy disk
with SAVE "ANSCHR".

-77 -

1 00 fkkkkkkhkhkkhkhkkhkkhkkhhhhhhhhhhhhkhkhkhkkhkkkhkkkkkhhkhhkkkkkkk

110
120 * ADDRESS MANAGEMENT

130 *

{4() AR AR KRR KRR KRRk R R

150 °

160 CLEAR 2000

170 HD$=" ADDRESS DIRECTORY"

180 DIM NN$(99),VN$(99), TI&(99),ST$(99),NR$(99),PL$(99),0T$(99)
200 'READ ADDRESS LIST

210 GOSUB 2450

220 OPEN “MAILBOX”,0

238 FOR N=8 TO 100

240 IN# "MAILBOX”,A$

250 IF A$ = “” THEN 280

260 IN# “MAILBOX”, NN$(N),VNS(N), TIS(N),STS(N),NR$(N),PLS(N),OT$(N)
270 NEXT N

280 CLOSE “MAILBOX’

300 ‘PRINT MENU

310 GOSUB 2400

320 PRINT

330 PRINT TAB(4);(1) NEW ENTRY"

340 PRINT TAB(4);"(2) UPDATE ENTRY"

350 PRINT TAB(4);"(3) DELETE ENTRY”

360 PRINT TAB(4);"(4) READ ENTRY"

370 PRINT TAB(4);"(5) SORTED LIST”

380 PRINT TAB(4};"(6) EXIT PROGRAM"

390 GOSUB 2500

400 A$=INKEY$: IF A$ < "1" OR A$ > "6" THEN 400
410 IF A$ = "1" THEN 500

420 IF A$ = "2” THEN 700

430 IF A$ = "3" THEN 1200

440 IF A$ = "4" THEN 1380

450 IF A$ = "5" THEN 1500

460 IF 50 = 1 GOSUB 2200

470 IF MO = 1 60TO 1800

480 CLS: END

500 ‘NEW ENTRY

510 GOSUB 2400

520 IF N = 99 PRINT "FILE MAILBOX ALREADY FULL”: GOTO 2450
530 INPUT "LAST NAME ";NN$: IF NN$ = "" THEN 510
540 INPUT "FIRST NAME ";VN$

550 INPUT "TITLE “TI$

560 INPUT "STREET ":ST$

-78 -

570 INPUT "HOUSE NUMBER ";NR

580 INPUT "ZIPCODE ";PL$

590 INPUT “LOCATION “0T$

600 GOSUB 2000

610 IF GF = 1 THEN 2550

620 NN$(N)=NN$: VN$(N)=VN$: TI$(N)=TI$: ST$(N)=ST$: NR(N)=NO
630 PL$(N)=PL$: OT$(N)=0T$

640 N = N +1

650 MO = 1: SO = 1

660 PRINT: PRINT "ENTRY COMPLETED*
670 GOTO 2600

700 'UPDATE ENTRY

710 GOSUB 2100: GOSUB 2000

720 IF GF = 0 THEN 2700

730 GOSUB 2400

740 PRINT "1. LAST NAME: ";NN$(1)

750 PRINT "2. FIRST NAME: ";VN$(1)

768 PRINT “3. TITLE: “TI$(1)

770 PRINT "4. STREET: ";ST$(1)

780 PRINT "5, HOUSE NUMBER: “NR(l)

790 PRINT "6. ZIPCODE : ";PL$(I)

800 PRINT "7. LOCATION: “:0OT$(1)

810 GOSUB 2500

820 A$=INKEY$: IF A$ < "0” OR A$ > "7" THEN 820
830 IF A$ = "0" THEN 300

840 IF A$ > "1" THEN 890

850 INPUT "LAST NAME “NN$

860 IF NN$ = "" THEN 730

870 IF NN$<>NN$(I) THEN NN$(I) = NN$: SO = 1: MO = 1
880 GOTO 730

890 IF A$ > "2" THEN 930

900 INPUT "FIRST NAME ";VN$

910 IF VN$<>VN$(I) THEN VN$(I)=VN$: SO = 1: MO = 1
920 GOTO 730

930 IF A$ > "3" THEN 970

940 INPUT "TITLE ":TI$

950 IF TI$<> TI$(1) THEN TI$(1)=TI$: MO = 1
960 GOTO 730

970 IF A$ > "4" THEN 1010

980 INPUT "STREET “:ST$

990 IF ST$<>ST$(I) THEN ST$()=ST$: MO = 1
1000 GOTO 730

1010 IF A$ > "5" THEN 1050

1020 INPUT "HOUSE NUMBER ":NR

-79 -

1030 IF NR<>NR(l) THEN NR(I)=NR: MO = 1
1040 GOTO 730

1050 IF A$ > "6" THEN 1090

1060 INPUT "ZIP CODE “;PL$

1070 IF PL$<>PL$(l) THEN PL$(1)=PL$: MO = 1
1080 GOTO 730

1090 INPUT “LOCATION “0T$

1100 IF OT$<>OT$(l) THEN OT$()=0T$: MO = 1
1110 GOTO 730

1200 ‘DELETE ENTRY

1210 GOSUB 2100: GOSUB 2000

1220 IF GF = 0 THEN 2700

1230 PL$(I) = "XXXX"

1240 PRINT: PRINT "ENTRY DELETED"

1250 MO = 1: GOTO 2600

1300 ‘READ ENTRY

1305 IF SO = 1 GOSUB 2200

1310 GOSUB 2100: GOSUB 2000

1320 IF GF = 0 THEN 2700

1330 GOSUB 2400

1340 PRINT TI$(1)

1350 PRINT VN$(1)” “NN$(1)

1360 IF ST$(I) = "™ THEN 1390

1370 PRINT ST$(1);

1380 IF NR(I) = 0 PRINT " " ELSE PRINT NR(l)
1390 IF PL$(l) = " THEN 1395 ELSE PRINT PL$(l)’ ";
1395 PRINT OT$(1)

1400 | = 1 + 1: GOSUB 1610

1410 IF 1 < N THEN 1330 ELSE 300

1500 ‘OUTPUT LIST

1510 IF SO = 1 GOSUB 2200

1520 =0

1530 GOSUB 2400

1540 IF N = 0 PRINT "NO ENTRIES EXIST”: GOTO 2600
1550 FOR J = 1 TO 12

1560 IF | = N THEN 1600

1570 IF PL$(1) = "XXXX* THEN 1590

1580 PRINT NN$(1)", "VN$(I)

1590 I= | + 1: NEXT J

1600 GOSUB 1610: IF | < N THEN 1530 ELSE 300
1610 PRINT @480, "<RETURN> = CONTINUE, <E> = EDN";
1620 A$ = INKEY$

1630 A$ = INKEY$: IF A$ =" THEN 1630

1640 IF A$ = "E" THEN | = N: RETURN

-80 -

1650 IF A$ <> CHR$(13) THEN 1630
1660 RETURN

1800 ‘WRITE DATA TO DISK

1810 GOSUB 2450

1820 OPEN "TEMP",1

1830 IF N = 0 THEM 1890

1840 FOR | = 0 TO N-1

1850 IF PL${l) = "XXXX* THEN 1880
1860 PR# "TEMP", "A"

1870 PR# “TEMP",NN$(1),VN$(1), TI$(1),,ST$(1),NR(1),PL$(1),OTS$(I)
1880 NEXT |

1890 CLOSE "TEMP"

1900 ERA "MAILBOX"

1910 REN "TEMP", "MAILBOX"

1920 CLS: END

2000 ‘SEARCH ENTRY IN LIST

2010 FOR | = 0 TO N-1

2020 IF PL$(1) = "XXXX" THEN 2060
2030 IF NN$ <> NN$(I) THEN 2060
2040 IF VN$ = " THEN 2070

2050 IF VN$ = VN$(I) THEN 2070
2060 NEXT I: GF = 0: RETURN

2070 GF = 1: RETURN

2100 ‘READ SEARCH CRITERIA
2110 GOSUB 2400

2120 INPUT "LAST NAME ":NN$
2130 IF NN$ = "" THEN 2110

2140 INPUT "FIRST NAME ";VN$
2150 RETURN

2200 ‘SORT THE ENTRIES

2210 GOSUR 2450: SO = 0

2220 IF N < 2 RETURN

2230 M = N

2240 M = INT (M/2): IF M = 0 RETURN
2250 J = 1: K= N-M

2260 | = J

2270 L =1+ M

2280 X=1-1:Y=L-1

2290 IF NN$(X) < NN$(Y) THEN 2390
2300 IF NN$(X) > NN$(Y) THEN 2320
2310 IF VN$(X) <= VN$(Y) THEN 2390

2320 NN$=NN$(X): VN$=VNS$(X): TI$=TI${(X): ST$=ST$(X): NR=NR(X)

2330 PL$=PL$(X):0T$=0T$(X):NNS$(X)=NNS(Y):VN$(X)=VNS$(Y)
2340 TI$(X)=TI$(Y):ST$(X)=ST$(Y):NR(X)=NR(Y)

-81 -

2350 PL$(X)=PL$(Y): OT${X)=0T$(Y): NN$(Y)=NN$
2360 VNS$(Y)=VNS$: TI$(Y)=TI$: ST$(Y)=ST$: NR(Y)=NR
2370 PL$(Y)=PL$: OT$(Y)=OT$

2380 1 = 1 - M: IF | > 0 THEN 2270

2390 J = J +1: IFJ >K THEN 2240 ELSE 2260

2400 '"HEADER OUT

2410 CLS: PRINT HD$: PRINT: RETURN

2420 ‘PLEASE WAIT

2460 CLS: PRINT @228,"**** PLEASE WAIT *****”
2470 RETURN

2500 'READ DIGIT

2510 PRINT: PRINT "PLEASE ENTER NUMBER (0=END)": PRINT
2520 A$ = INKEY$

2530 RETURN

2550 ‘MESSAGE "ADDRESS EXISTS"

2560 PRINT: PRINT "ADDRESS ALREADY EXISTS"
2600 ‘WAIT FOR RETURN

2610 PRINT: INPUT "CONTINUE WITH <RETURN>":X
2620 GOTO 300

2700 ‘MESSAGE "ADDRESS NOT AVAILABLE"

2710 PRINT: PRINT "ADDRESS NOT AVAILABLE"
2720 GOTO 2600

3000 OPEN "MAILBOX”, 1

3010 CLOSE “MAILBOX"

3020 END

-82 -

7. Technical Information

Structure and organization of the diskette

Structure of the diskette after initialization

Before you can work with a floppy disk, it must have the basic structure of tracks and
sectors.

This basic structure is written to the diskette using the initialization (INIT command).
It consists of 40 tracks with 16 sectors each, each with 128 bytes of data capacity.
As noted in the "Recording Structure" section, each sector is followed by a certain
"overhead" consisting of necessary synchronization and addressing fields. This

results in a total length of 154 bytes per sector.

Such a sector has the following basic structure:

Bytes 8 - 6 Address synchronization 7 * X'80'
Bytes 7 - 10 Address mark X'FE E7 18 C3'
Bytes 11 - 13 Address field

Byte 11 = track number (0-39)

Byte 12 = sector number (0-15)

Byte 13 = checksum "address field" (Track# +

Sector#)

Bytes 14 - 19 Data synchronization 6 * X'80'
Bytes 20 - 23 Data mark X'C3 18 E7 FE'
Bytes 24 - 151 Data field = 128 bytes

Bytes 152 - 153 checksum "data field"

-83 -

Each sector is written completely during initialization, with the data field and
checksum (bytes 24 - 153) being set to X'00'.

The sectors are not numbered consecutively around the disk, but arranged in jumps
of three (see Figure 1.6). This achieves the effect that consecutive sectors of a track
can be reached during one revolution of the disk if a certain processing time in
between is not exceeded.

This is 94 ms from the end of a sector until the beginning of the next sector appears
in the numerical order under the read/write head. 94 ms is a huge amount of time, in
which, computer can do extensive data manipulation.

Of the tracks on a floppy disk, 39 are available for storing programs and data,

The first track of a diskette (track 0) is used for diskette management. It contains the
table of contents of the diskette and a sector allocation overview.

Table of Contents

The table of contents of the diskette is in the first 15 sectors of track 0 (sector 0 - 14).
Each entry occupies a space of 16 bytes,
This gives a capacity of 8 entries per sector and 8 x 15 = 120 entries in the whole
directory (see error message "?DIRECTORY FULL").
An entry in the table of contents has the following structure:
Byte 0 occupancy status / file type
0 - end of used entries in the table of contents
1 - released entry (e.g. after a "ERA")
D - entry refers to a data file
T - entry refers to a text file (BASIC program)

B - entry refers to a binary file (machine Program)

Byte 1 separator (always ")

-84 -

Bytes 2-9 file name
Byte 10 - 11 address of the first sector of this file
Byte 10 - track number

Byte 11 - sector number

Byte 12-13 only with file type =T or B
Program start address in memory

Byte 14 - 15 only with file type = T or B
Program end address in memory
With the "DIR" command, the first 10 bytes of each assigned entry are simply output

on the screen without any preparation.

If a file is deleted, only the status byte (byte 0) is set to '1'. All other entries are
retained.

The sector administration

The last sector of track 0 contains the allocation overview for the disk sectors.

A bit is reserved there for each sector from track 1, which indicates whether the
corresponding sector is free (bit = 0) or occupied (bit = 1).

With 39 tracks and 16 sectors per track, this results in 624 required bits or 78 bytes
containing relevant information in this sector.

When writing a file, this allocation overview is used to determine the sectors required

for storage. The sectors are always occupied from front to back and any gaps that
may have arisen are filled in by deleting them.

-85 -

Mapping example:

Track O / Sector 15

Byte 0 = Track 0, Sectors 0 -7
Byte 1 = Track 0, Sectors 8 - 15
Byte 2 = Track 0, Sectors 0 -7
Byte 77 = Track 39, Sectors 8 - 15

Storage of programs and files

All programs stored on the diskette receive a corresponding entry in the table of
contents, with the type of file or program being noted in the first byte.

This type designation is the only difference between text files (BASIC programs) and
binary files (machine programs). The recording structures are identical.

The different type identifiers result in different handling after loading or starting such
a program (see the LOAD/RUN or BLOAD/BRUN command descriptions).

Bytes 10 and 11 of the table of contents contain a pointer to the first sector occupied
by this program.

Bytes 12 - 15 of the table of contents contain information about the memory area to
which this program is to be transferred when loading. Bytes 12 and 13 contain the
start address and bytes 14 and 15 the end address of the transfer area.

The data sectors contain in bytes 0 - 125 of the data field a 1:1 Kopie of the memory
area, i.e. in binary data representation,

The sectors occupied by a program do not have to be physically consecutive, but

can be scattered on the diskette. In order to still be able to read a program in one go,
the individual sectors are indexed one below the other.

- 86 -

In bytes 126 and 127 of the sector there is a pointer to the next sector of this
program (track and sector number) or '0' in the last occupied sector.

Data files with the type designation 'D' do not contain information about a memory
area to be occupied in the table of contents, bytes 12 - 15 are irrelevant.

Bytes 10 and 11 also contain the pointer to the first occupied sector.

As with the programs, the individual sectors of the file are linked to one another.
Each sector of a data file contains the actual data in the first 126 bytes of the sector
and a pointer to the next occupied sector or '0' at the end of the file in the last two
bytes.

The structure of the data in the first 126 bytes differs from the other two file types.

Data representation is in ASCII format only. Storage is based on data records, with
each PR# command writing a complete data record to the file.

Records contain a defined end identifier. This is the ASCII character for "Carriage
Return" X'0D'.

A data record is not based on sector boundaries. There can be several records in
one sector; a data record can also extend over several sectors. Except for the first
record of a file, records do not have to start on a sector boundary either.

Within the data records, the various data fields are separated from one another by
commas; they are assigned to the variables defined in the IN#¥ command when they
are read.

-87-

Memory resident workspaces

To process the diskettes, DOS creates various data structures in the last 310 bytes
of the available RAM memory, which contain processing vectors, file management
blocks and input/output buffers (Figure 1.7).

Iy —»0 <+—— RAM end address —310
DOS
vectors
+ 67
data mark
+ 77
data buffer
+ 231
Sector
allocation map
(MAPAREA)

Figure 7.1 The memory areas of DOS

DOS vectors

The first 67 bytes of this DOS work area contain the DOS vectors.

The address of the start of the DOS vectors is stored by DOS during system
initialization to the Z80 register 'IY'. DOS expects that this register will not be
changed by user programs, otherwise a system crash will inevitably occur and data
on the diskette may also be destroyed (bitter experience of the author).

- 88 -

The DOS vector area is structured as follows:

DOSVTR =Y

Name

FILNO

FNAM

TYPE

DK

RQST

SOURCE

UBFR

Bytes

Offset

lY+0

lY+1

lY+9

lY+11

lY+12

lY+13

lY+14

Description

File number.

When processing a data file, this is the
number of the file management block
(FCB) used.

0=FCB1,1=FCB2

Filename

Name of the file to edit. must be
entered by the user program before
each file/program access.

File Type

Byte 1 = target type.

Byte 2 = actual type.

From the user program, the type of file
to be processed is in the first byte.

Selected Drive.

X'10' = Drive 1

X'80" = Drive 2

X'"10' is set during initialization.

Access type.

0 =read

1 = write

Must be set by the user program.
With BASIC, this is done with the
OPEN command.

Starting drive (source) used by
DCOPY command (1 or 2)

Address of a user buffer area to or
from which data is to be transferred.
When loading and saving programs,
this is the program area.

When reading data files, it is the

-89 -

DESTIN

SCTR

TRCK

RETRY

DTRCK

NSCT

NTRK

FCB1

FCB2

DBFR

LTHCPY

MAPADR

13

13

lY+16

lY+17

lY+18

lY+19

lY+20

lY+21

lY+22

lY+23

lY+36

lY+49

IY+51

lY+52

BASIC input/output buffer

Target drive for the DCOPY command
(1or2)

Number of the Sector to be addressed

Number of the Track to be addressed,

Retry counter for read errors
(checksum).
Set to 10 upon initialization.

Current track number over which the
read/write head is located.

Marker field for the next sector to be
addressed.

Marker field for the next track to be
addressed.

File Control Block 1.
(see Structure description)

File Control Block 2.
(see Structure description)

Pointer to the DOS data buffer for
writing and reading a sector This is
located immediately after the DOS
vectors in the work area.

Copy of the command byte sent to the
Floppy Disk Controller.

Pointer to the DOS buffer in which the
sector allocation map is temporarily
stored.

This is behind the data buffer in the

-90 -

work area.

TRKCNT 1 IY+54 Track counter for the DCOPY
command

TRKPTR 1 lY+55 Track pointer for the DCOPY
command.

PHASE 1 lY+56 Step pulse raster for track adjustment.

DCPYF 1 IY+57 Flag for DCOPY

RESVE 10 IY+58 reserved for extensions.

File Control Blocks (FCB)

Within the DOS vectors are two 13 byte file control blocks, FCB1 and FCB2.

These are required when processing data files in order to keep status and control
information about the file being accessed.

A free file control block is determined by the OPEN command and provided with the
necessary parameters for the file to be opened.

The IN# and PR# commands are based on the relevant file control block, e.g. which
sector of the file is to be read and at which byte of this sector processing is to be
continued.

The file control blocks are released again by the CLOSE command.

Since there are only two of these blocks, only two files can be open at the same
time.

-91 -

The File Control Block has the following structure:

FCB1 or FCB2

Name Bytes Description

FLAG 1 Indicates the status of the FCB.

0 - FCB not used
1 - FCB used, file currently not active
2 - FCB used, file active.

Active means that a current sector of this file is
in the data buffer for processing

ACCESS 1 Access type for this file.
0 -read
1 - write
FNAM 8 Filename
TRK# 1 Track Number
SCTR# 1 Sector Number of currently processed Sector
PTR 1 Pointer to the next byte to be processed in the above
sector.

Input/Output Buffer

In the DOS work area there are two buffer areas, one for temporary storage of the
sectors to be read or written and a second for the sector occupancy overview.

-92 -

Data Buffer (DBFR)

This buffer has a size of 154 bytes and serves as a buffer for direct data exchange
with the floppy disk.

When writing, the sectors are transferred from the data buffer to the diskette; when
reading, the sectors are transferred from the diskette to the data buffer.

During initialization, the 10 bytes of the data mark are set in front of the data buffer,
so that a complete information block (data mark + data field) is available when a
sector is written.

During normal read/write operations, only the first 128 bytes of the data buffer are
used to hold a sector's data field.

The full length of 154 bytes is only required during diskette initialization to
accommodate a complete sector, including all sync fields, address fields, and
identifiers.

Sector Occupancy Overview (MAP)

At the end of the DOS work area there is an 80-byte buffer area in which the sector
occupancy overview from sector 15 of track 0 on the diskette is buffered.

When saving a program or writing a data file, the sectors are selected and allocated
exclusively in this buffer area after the current sector has been read in at the
beginning. Only when the saving process for the program is complete, the
assignment overview (MAP) is written back to the diskette.

-93-

-94 -

8. Communication between the DOS and the
Floppy Disk Controller

The connection between the DOS and the floppy disk controller is established via 4
input/output ports. These are ports 10H in hexadecimal notation. 11H, 12H and 13H.

PORT 10H = command register (O/P LATCH)

The control information is transferred to the command register of the floppy
disk controller via this port.

Bit 7 = Drive 2 - select (1 = yes)

Bit 6 = Access type (0 = write, 1 = read)

Bit 5 = Output pulse when writing to diskette
Bit 4 = Drive 1 - select (1 = yes)

Bits 3-0 = Step phases for disk head adjustment

A copy of the port contents is kept in the DOS vectors in the LTHCPY field.
This field is initialized with '0110 0001".

The current step phases are held and processed in the "PHASE" field of the
DOS vectors.

The selected drive is in the DK field.

When a drive is powered on, drive select (DK) and step phase (PHASE) are
linked to the contents of LTHCPY.

PORT 11H = READ and STROBE SHIFT register

The data is read from the diskette via this port. They are inserted serially from
the left bit by bit by the floppy disk control.

-95.-

PORT 12H = POLL DATA

This port is used for synchronization when reading.

A negative pulse is generated when the next bit is available at port 11.
PORT 13H = READ/WRITE PROTECT STATUS

The write protection status of a floppy disk can be determined via this port
(write protection notch taped over or not).

The result is passed in bit 7.
(1 =read only)

-96 -

9. The most important DOS routines and their
application in machine programs.

Call and Overview

As already mentioned several times, the DOS occupies the address space 4000H to
5FFFH. It is in ROM chips built into the floppy disk controller. The floppy disk
controller is connected to the system bus of the computer.

The presence of a floppy disk controller is determined when the computer is
switched on by checking a specific byte sequence (AA 55 E7 18). If this byte
sequence is found, the subsequent initialization routine is called automatically, which
among other things attaches a BASIC vector so that the special DOS commands can
be recognized and executed.

This is the RESTART 10 vector at address 7803H in the BASIC communications
area. If this vector is called up by BASIC within the command analysis (at address
1D5AH), the DOS first checks whether a special DOS command is present. If no, the
program continues with the normal BASIC command execution. If a DOS command
is recognized, the necessary execution routines are called in DOS.

The DOS vector area at the end of the memory is also built up by the DOS
initialization routine and filled with initial values.

You can also check within a machine program whether a floppy disk controller is
connected to the system bus by checking the corresponding byte sequence at
address 4000H.

The DOS itself consists of a number of self-contained routines. A large part of it can
also be called from machine programs, so that individual diskette and data handling
can be programmed and executed there.

You could use it to edit the existing file system of DOS, but you could also create

completely new structures and forms of processing, such as the previously
mentioned files with direct access, which are not supported by DOS.

-97 -

Jumping to the individual routines directly at their start addresses would be one of
the possible uses. However, you would then fix the programs to a DOS version, since
each time the DOS changes, some of these addresses are also shifted.

A more elegant solution is to use a jump table at the beginning of the DOS, which
was created by the manufacturer for this purpose and allows the most important
subroutines to be called.

It is called using the Z80 command

CALL xxxxH

The following subroutines can be reached via this jump table:

Name

PWRON
PWROFF

ERROR

RDMAP
CLEAR
SVMAP
INIT
CSl

HEX

IDAM

CREATE

MAP

SEARCH

Call

CALL 4008H
CALL 400BH

CALL 400EH

CALL 4011H
CALL 4014H
CALL 4017H
CALL 401AH
CALL 401DH

CALL 4020H

CALL 4023H

CALL 4026H

CALL 4029H

CALL 402CH

Function

Turn on the drive

Turn off the drive

DOS error handling

Load sector occupancy Map
Delete sector

Write sector occupancy Map
Initialize disk

Interpret command parameters

Conversion ASCII to HEX

Look for the address mark on the diskette

Write an entry in the table of contents

Detect a free sector

Find file in table of contents

-908 -

FIND CALL 402FH Look for free space in the table of contents

WRITE CALL 4032H Write sector to disk

READ CALL 4035H Read sector from disk

DLY CALL 4038H n milliseconds delay

STPIN CALL 403BH Advance head n tracks inward
STPOUT CALL 403EH Advance head n tracks outward
LOAD CALL 4041H Load a program

SAVE CALL 4044H Save a program

However, before you call one of these subroutines, very specific input parameters
often have to be set, e.g. entry of the file name in the DOS vector, drive selection in
the DK field, etc...

It is also important to know which results such a subroutine returns where and which
possible error codes are reported.

You should also know which registers are changed in the subroutines
SO you can save them beforehand.

The following pages describe each of these subroutines with their input and output
values, registers used and error codes. In addition, there is a function description
and an application/call example.

Two additional functions that you cannot access via the jump table but can easily be
programmed yourself are also listed. These are the drive selection and checking the
write protection of the floppy disk.

Be careful not to change register Y in your program. The start address of the DOS
vectors is entered there during the initialization, which not only the DOS, but also you
constantly need when using the routines mentioned above.

Some routines return error codes in register A. In any case, you should check

whether your call was successful or not.

-99 .-

All data that is moved between the computer and the floppy disk uses the data buffer
in the DOS work area as temporary storage. Remember that each time a sector is
read or written, its content is modified.

The operating system generates an interrupt every 20 ms, which is normally used to
update the screen content and evaluate the keyboard.

However, these interruptions are not desirable for disk accesses, where very precise
time intervals are important; they would make error-free access impossible.

For this reason you must switch off the interrupts with DI (disable interrupts) and
then switch them on again with El (enable interrupts) before each diskette access.

In many cases, you must also check whether the diskette to be edited is
write-protected; otherwise, write operations are still performed.

PWRON - Turn on a drive

Call: CALL 4008H

Input: DK (IY+11) in the DOS vectors = Drive identifier
X'10"' = Drive 1
X'80" = Drive 2

Exit: -

Registers used: A

Error handling: none

The drive selected in DK will be powered on. The drive motor runs and the red
LED on the front of the drive lights up.

- 100 -

You should wait a few milliseconds for the rotation speed to stabilize before
accessing this drive.

Example:
DI ; disable interrupts
LD A,80H ; select Drive 2
LD (IY+11),A
CALL 4008H ; turn on the drive
LD BC,50 ; 50 ms delay
CALL 4038H

Drive 2 turns on, then the program waits 50ms for stabilization.

PWROFF - Turn off a drive

Call: CALL 400BH
Input: -

Exit: -

Registers used: A
Error handling: none

A powered-on drive is powered off. The drive motor stops and the LED on the
front of the drive goes out.

Example:

CALL 400BH ; turn off the drive

-101 -

ERROR - Error handling

Call: CALL 400EH
or: JP 400EH

Input: A = Error code (0 - 17)

Exit: Jump to the BASIC interpreter
Registers used: AF, BC. DE, HL
Error handling: none

A powered-on drive is powered off. The drive motor stops and the LED on the
front of the drive goes out.

An error message is output according to the error code transferred in the A
register. A possibly switched on drive is switched off (with error code > 1).

This routine differs from the other routines insofar as it jumps to the BASIC
interpreter instead of to the calling program.

The stack pointer is set to the BASIC stack.

A= generated message further process

0 none to the BASIC interpreter (1BO9AH)

1 7?SYNTAX ERROR Release and further expiry about 1997H
2 ?FILE ALREADY EXISTS to the BASIC interpreter (1B9AH)

3 ?DIRECTORY FULL to the BASIC interpreter (1B9AH)

4 ?DISK WRITE PROTECTED to the BASIC interpreter (1B9AH)

5 7?FILE NOT OPEN to the BASIC interpreter (1B9AH)

6 ?DISKI/O ERROR to the BASIC interpreter (1B9AH)

7 ?DISK FULL to the BASIC interpreter (1B9AH)

-102 -

10

11

12

13

14

15
16

17

?FILE ALREADY OPEN

?SECTOR NOT FOUND

?CHECKSUM ERROR

?UNSUPPORTED DEVICE

?FILE TYPE MISMATCH

?FILE NOT FOUND

?DISK BUFFER FULL

?ILLEGAL READ
?ILLEGAL WRITE

?BREAK

Example:

Note:

LD A7
CALL 400EH

to the BASIC interpreter (1B9AH)

to the BASIC interpreter (1B9AH)

to the BASIC interpreter (1BO9AH)

to the BASIC interpreter (1BO9AH)

to the BASIC interpreter (1B9AH)

to the BASIC interpreter (1B9AH)

to the BASIC interpreter (1BO9AH)

to the BASIC interpreter (1BO9AH)
to the BASIC interpreter (1BO9AH)

to the BREAK routine (1DAOH) in BASIC

; Error code 7
; Output message "DISK FULL"

The message "?DISK FULL" is output and then BASIC responds with

READY.

Using the line number field in the BASIC communication area (78A2H), the
ERROR routine distinguishes whether it is a direct command or a program
command.

If field 78A2H/78A3H contains a value not equal to X'FFFF', this is interpreted
as a line number and this is output after the error message (error codes 1-16).

-103 -

This function can perhaps also be useful when testing machine programs by
setting specific values in 78 A2H/78A3H which, if an error occurs, give you an
indication of the corresponding point in the program.

Example:
OR A ; check if error occurred
JR ZXY ; no, go on!
LD HL,10 ; set row identifier
JP 400EH ; call error routine
XY

If A contains a value not equal to 0, the corresponding error message
is output with information about the location of the occurrence.
e.g. A= 3, then "?DIRECTORY FULL IN 10".

RDMAP - Load allocation Map

Call: CALL 4011H
Input: The corresponding drive must be switched on.

Exit: The sector allocation map is located in the 80-byte buffer at the end
of the DOS work area (MAPAREA).

The drive remains powered on.
Registers used: AF, BC. DE, HL

Error handling: In the event of an error, this routine automatically branches
to the ERROR routine. Custom error handling is not possible.

-104 -

The sectors - occupancy overview (occupancy map) is loaded from sector 15
of track 0 from the diskette into the main memory and transferred to the
MAPAREA at the end of the DOS work area.

Note that you are responsible for turning the drive on and off yourself.

Example:
DI ; disable interrupts
LD A,10H ; select Drive 1
LD (IY+11),A
CALL 4008H ; and turn on
LD BC,50
CALL 4038H ; 50 ms delay
CALL 4011H ; load allocation map
CALL 400BH ; turn off the drive
LD L,(IY+52) ; start address of allocation map ..
LD H,(IY+53) ; .. into HL
El ; enable interrupts again

The sector occupancy overview is loaded from the floppy disk in
Drive 1. The start address of the MAPAREA is then made available in
the register pair HL.

Internally called routines: READ

CLEAR - Deleting a sector on the floppy disk

Call: CALL 4014H
Input: The corresponding drive must be switched on.

SCTR (IY+17) = Sector Number
TRCK (IY+18) = Track Number

- 105 -

Exit: The addressed sector is physically erased from the disk..
Registers used: AF, BC. DE, HL
Error handling: In the event of an error, this routine automatically branches

to the ERROR routine.Custom error handling is not possible.
The sector addressed in the DOS vectors SCTR (IY+17) and TRCK (IY+18) is
physically erased on the diskette, i.e. overwritten with binary zeros (X'00").

Note that you have to take care of switching the drive on and off yourself.

Before erasing the sector, make sure the disk is not write-protected.

Example:
DI ; disable interrupts
LD A,80H ; select Drive 2
LD (IY+11),A
CALL 4008H ; and turn on
LD BC,50 ; 50 ms delay
CALL 4038H
IN A,(13H) ; check write protection
OR A
LD A4
JP M,400EH ; read only!
LD (1Y+17),12 ; set Sector Number
LD (1Y+18),28 ; set Track Number
CALL 4014H ; erase sector
CALL 400BH ; turn off drive
El ; enable interrupts again

Sector 12 in track 28 of the disk in drive 2 will be erased.

Internally called routines: WRITE

- 106 -

SVMAP - Save allocation Map to disk.

Call: CALL 4017H
Input: The corresponding drive must be switched on.
The current allocation map is in the DOS work area in MAPAREA.

Exit: The sector map was written to sector 15 of track 0 on the floppy disk
in the selected drive..

The drive remains powered on.
Registers used: AF, BC. DE, HL

Error handling: In the event of an error, this routine automatically branches
to the ERROR routine. Custom error handling is not possible.

The sector occupancy overview (allocation map) is transferred from the
corresponding buffer of the DOS work area (MAPAREA) to the data buffer and
written from there to sector 15 of track 0 on the diskette.

Note that you must turn the drive on and off by yourself.

Before saving, check that the floppy disk is not write-protected,

- 107 -

Example:

DI ; disable interrupts

LD A,10H ; select Drive 1

LD (IY+11),A

CALL 4008H ; and turn on

LD BC,50 ; 50 ms delay

CALL 4038H

IN A,(13H) ; check write protection
OR A

LD A4

JP M,400EH ; read only!

CALL 4017H ; write back allocation map
CALL 400BH ; turn off drive

El ; enable interrupts again

The sector allocation overview is written back from the DOS work area
(MAPAREA) to the diskette in drive 1 (track 0, sector 15).

Internally called routines: WRITE

INIT - Initialize disk.

Call: CALL 401AH

Input: DK (IY+11) = Drive identifier.
X'10’ = Drive 1
X80’ = Drive 2

Exit: The floppy disk in the selected drive has been initialized.

Registers used: AF, BC. DE, HL

- 108 -

Error handling: In the event of an error, this routine automatically branches
to the ERROR routine. Custom error handling is not possible.

A diskette in the selected drive is reinitialized, i.e. it is divided into 40 tracks
with 16 sectors each and provided with the appropriate synchronization and
identification marks.

All data previously on this diskette will be erased.

This routine handles the powering on and off of the drive itself.

The write protection is checked by INIT, the interrupts are switched off at the
beginning.

Example:
LD A, 10H ; select Drive
LD (IY+11),A
CALL 401A ; initialize disk
El ; enable interrupts

The floppy disk in drive 1 is initialized.

Internally called routines: IDAM
STPIN
STPOUT
DLY

- 109 -

CSI - Interpret command parameters.

Call: CALL 401DH

Input: HL = starting address of a file name enclosed in double quotes.
This must end with X'00' or ":'.

Exit: The file name was checked and transferred to the FNAM field
of the DOS vectors.

HL = address of terminator
Registers used: AF, B. HL

Error handling: If the file name is not enclosed in quotation marks
or not correctly terminated, this routine branches to BASIC
and the message "?SYNTAX ERROR" is displayed.

The first eight characters of a filename enclosed in quotation marks are
transferred to the FNAM field of the DOS vectors.

A BASIC line end identifier X'00' or a command separator ":' must be located
after the closing quotation mark.

This routine is used by DOS-BASIC to check the syntax.

Disk access does not take place.

Example:

LD HL,DNAM1 ; address of filename
CALL 401DH ; are transmitted to FNAM

DNAM1 DEFM ““MAILBOX”:’

- 110 -

The file name "MAILBOX" is transferred to the DOS vector FNAM for
subsequent addressing.

HEX - Conversion ASCII to HEX.

Call: CALL 4020H

Input: HL = Start address of a 4-byte hexadecimal number
in ASCII format..

Exit: DE = equivalent hexadecimal value (binary)
HL = Input address + 4
Registers used: AF, DE, HL
Error handling: Carry = 0 - no error
Carry = 1 - conversion failed

This routine can be used to convert a hexadecimal address input from the
keyboard to its binary equivalent.

This routine is used by DOS BASIC, e.g. by the BSAVE command, to interpret
and accept the program start address and end address.

Example:
LD HL,ASCII ; Address ASCII value
CALL 4020H ; convert
JR NC,A1 ; Carry=0? ok, go to A1
LD A1 ; Carry=1, "SYNTAX ERROR"
JP 400EH ; output via ERROR routine
A1 LD (BIN),DE ; save binary value
ASCII DEFM ‘A31C’

BIN DEFS 2

- 111 -

The character string in the "ASCII" field is converted into the hexadecimal
value and stored in the "BIN" field.

IDAM - Look for the address mark on the diskette

Call: CALL 4023H
Input: The corresponding drive must be switched on.

SCTR (IY+17) = Sector Number
TRCK (IY+18) = Track Number

Exit: If the return jump is error-free, the read/write head is located directly
in front of the data mark of the sector being searched for..

Registers used: AF, BC. DE, HL

Error handling: A = 0 - Address mark found
A =9 - Address mark not found
A =17 - BREAK key pressed

if A=0, Zflag is set
if A<>0, Zflag is clear

This routine is used to position the read/write head in front of the data mark of
this sector before writing or reading a sector.

IDAM first positions the head over the desired track and then reads address
mark after address mark until the desired sector is found. The writing or
reading process for the data field must then begin immediately, since the
diskette continues to rotate.

IDAM is already integrated in the READ and WRITE routines for reading or
writing a sector.

-112 -

Example:

DI ; disable interrupts

LD A,80H ; select Drive 2
LD (IY+11),A

CALL 4008H ; and turn on

LD BC,50 ; 50 ms delay
CALL 4038H

LD (IY+17),6 ; Sector Number
LD (IY+18),14 ; Track Number
CALL 4023 ; search sector
JP NZ,400EH ; error or BREAK

Read or write sector

The read/write head should be positioned in front of the data mark of
sector 6 of track 14 for subsequent reading or writing.

Internally called routines: STPIN

STPOUT

CREATE - Write an entry in the table of contents

Call: CALL 4026H

Input: filename in FNAM (IY+1)

Exit:

File Type in TYPE (IY+9)
The allocation map must be loaded (MAPAREA).
The drive must be powered on.

The file was entered in the table of contents, the first data sector
for this file was reserved.

Registers used: AF, BC. DE, HL

-113 -

Error handling: 0 Entry made
2 File already exists
=3 no space in the table of contents
7 no free sector (disk full)
9 An address mark was not found
A checksum error occurred during reading

BREAK key pressed

nn
~N O

An entry is made in the directory for the file specified in FNAM and the first
free sector is reserved for this file.

First, SEARCH checks whether a file with the same name already exists. If
not, a free entry in the table of contents is determined with FIND and a first
free sector is searched for with MAP. If both were successful, the entry is
made in the table of contents.

To do this, the file type, separator "', file name and the address of the first
sector are entered in the 16-byte entry found in the table of contents, and the
table of contents is written back.

The allocation map should then also be written back to the diskette, otherwise
the first sector will not be definitively assigned. If you forget this, it will later
lead to a double allocation of this sector and possibly to an inextricable mess
of the data.

Of course, rascals can take advantage of this and make two different entries
for the same file with different names in the table of contents. Sensible ???

Before calling CREATE, you should definitely check the write protection of the
diskette.

The success of the action can be checked by evaluating the A register.

- 114 -

Example:

DI ; disable interrupts

LD (1Y+11),10H ; select Drive 1

CALL 4008H ; and turn on

LD BC,50 ; 50 ms delay

CALL 4038H

IN A,(13H) ; check write protection

OR A

LD A4

JP M,400EH ; read only!

CALL 4011H ; load allocation map

LD HL,DNAM ; filenames in the field

CALL 401DH ; copy to FNAM

LD (IY+9),’B’ ; set Type ='B'

CALL 4026H ; enter the file in the table of contents

OR A ; error occured?

JP NZ,400EH ; yes, to the ERROR routine

CALL 4017H ; write back allocation map

CALL 400BH ; turn off the drive

El ; allow interrupts again
DNAM DEFM ““KARTEI":’

An entry is made in the table of contents of the diskette in drive 1 for
the binary file "KARTEI" (type = B).

Internally called routines: SEARCH
FIND
MAP
READ
WRITE

- 115 -

MAP - Detect a free sector on the disk

Call: CALL 4029H

Input: filename in FNAM (1Y+1)
File Type in TYPE (IY+9)

Exit: NSCT (IY+21) = Sector Number
NTRK (IY+22) = Track Number

The sector addressed with NSCT and NTRK was reserved in internal
allocation map (MAPAREA)..

Registers used: AF, BC, HL
Error handling: A =0 sector found

A =7 no free sector (disk full)

This routine determines a free sector in the internal allocation map in DOS
vectors (MAPAREA), which should previously be filled with the current
allocation map from track 0O, sector 15 of the diskette.

If a free sector is determined, the corresponding bit in the allocation map is
set to 1.

Please note, however, that a final allocation has only taken place when the
allocation map has been written back to the diskette.

The result (the sector address) is passed in the NSCT and NTRK fields of the
DOS vectors. If you want to access the sector, e.g. with WRITE, you must first

transfer this address to the SCTR and TRCK fields.

No disk access is performed by the MAP routine.

- 116 -

Example:

DI ; disable interrupts

LD (1Y+11),80H ; select Drive 2

CALL 4008H ; and turn on

LD BC,50 ; 50 ms delay

CALL 4011H ; load allocation map

CALL 4029H ; determine free sector

OR A ; error occured?

JP NZ,400EH ; yes, to the ERROR routine
CALL 4017H ; write back allocation map
CALL 400BH ; turn off the drive

El ; allow interrupts again

A free sector is determined and allocated on the diskette in drive 2. The
sector address is passed in the NSCT and NTRK fields of the DOS
vectors.

SEARCH - Find file in table of contents

Call: CALL 402CH
Input: Filename in FNAM (IY+1)
The drive must be powered on.
Exit: If file exists, type of file in TYPE+1 (IY+10).
The sector of the table of contents with the entry found is
in the data buffer.
Register DE points to the byte after the name.
SCTR and TRCK contain the address of the sector.

Registers used: AF, BC, DE, HL

- 117 -

A =0 File does not exists

A =2 File already exists

A =9 An address mark was not found

A =10 A checksum error occurred during reading
A =13 File does not exists

A =17 BREAK key pressed

Error handling:

The SEARCH routine checks whether a file with the name stored in FNAM
already exists in the table of contents of the addressed diskette.

The result of the search is transferred in the A register.

A =2 means that there is a corresponding entry
The sector of the table of contents is in the data buffer and DE
points to the byte after the name of the entry found (= address of
the 1st sector of this file).
The SCTR and TRCK fields of the DOS vectors contain the
sector address within the table of contents.
The TYPE+1 (IY+10) field contains the type of the found file.
You may have to evaluate this yourself.

A =0 or A = 13 have the same meaning.
The specified file is not in the table of contents of the diskette.
A=0 - the end of valid entries has been reached.
A=13 - the end of the table of contents has been reached.

All other values of A indicate an error or fact that BREAK key was pressed.

Example:
]| ; disable interrupts
LD (IY+11),10H ; select Drive 1
CALL 4008H ; and turn on
LD BC,50 ; 50 ms delay
CALL 4038H

CALL 4011H ; load allocation map

- 118 -

LD HL,DNAM ; filename text

CALL 401DH ; copy filename to FNAN

CALL 4026H ; find file in table of contents

OR A

JR ZA1 ; unavailable!

CP ODH

JR Z,A1 ; unavailable!

CP 2 ; error?

JP NZ,400EH ; yes, to the ERROR routine

IN A,(13H) ; check write protection

OR A

LD A4

JP M,400EH ; read only, to the ERROR routine
EX DE,HL ; address of entry in HL

LD DE,10 ; HL to the beginning of the entry
ADD HL,DE

LD (HL), ; release entry

CALL 4023H ; write back sector of table of contents

release occupied sectors in the allocation map

A1 CALL 4017H ; write back allocation map

CALL 400BH ; turn off drive
El ; enable interrupts again
DNAM ‘““DIARY”’

The "DIARY" file, if present, is deleted from the directory of the diskette
in drive 1. If not there, the delete routine is skipped.

Note that this example has not been fully coded out. In addition to
deleting the entry in the table of contents, you must also release all
occupied sectors of this file in the allocation map.

Internally called routines: READ

- 119 -

FIND - Look for a free entry in table of contents

Call: CALL 402FH
Input: The drive must be powered on.

Exit: SCTR = Sector Number
TRCK = Track Number

The addressed sector of the table of contents is in the data buffer.
HL points to the beginning of the free entry.

Registers used: AF, BC, DE, HL

Error handling: A =0 Ok, free entry determined
A =3 no free entry available
A =9 An address mark was not found
A =10 A checksum error occurred during reading
A =13 File does not exists
A =17 BREAK key pressed

A free entry is determined in the table of contents of the activated floppy disk.

The result is transmitted in register A.

If successful (A=0), the corresponding sector of the table of contents is in the
data buffer and register pair HL points to the beginning of the free entry.

The SCTR and TRCK fields contain the address of this sector. An entry can
now be made there.

-120 -

Example:

DI ; disable interrupts

LD (1Y+11),10H ; select Drive 1

CALL 4008H ; and turn on

LD BC,50 ; 50 ms delay

CALL 4038H

CALL 402FH ; determine free entry

OR A ; successful?

JP NZ,400EH ; no, to the ERROR routine
CALL 400BH ; turn off drive

El ; enable interrupts again

A free entry in the table of contents is determined on the diskette in
drive 1.

Internally called routines: READ

WRITE - Write sector to disk

Call: CALL 4032H

Input: The drive must be powered on.
The sector to be written must be in the data buffer.
The address of the sector to be written must be in the SCTR and TRCK
fields of the DOS vectors.

Exit: The sector in the data buffer was transferred to the diskette.

Registers used: AF, BC, DE, HL, BC’, DE’, HL

-121 -

Error handling: A =0 Ok, sector written
A =9 An address mark was not found
A =17 BREAK key pressed

The sensitive data in the data buffer are transferred to the addressed sector of
the diskette. The checksum is determined and placed at the end of the sector.

The sector is transferred including the data mark (10 bytes) in front of the data
buffer and the checksum, ie a total of 140 bytes are written to the diskette.

[TODO] 140 Bytes??? Not sure it’s true

Example:
DI ; disable interrupts
LD (IY+11),10H ; select Drive 1
CALL 4008H ; and turn on
LD BC,50 ; 50 ms delay
CALL 4038H
IN A,(13H) ; check write protection
OR A
LD A4
JP M,400EH ; read only, to the ERROR routine
LD (IY+17),10 ; set Sector Number in SCTR
LD (IY+18),5 ; set Track Number in TRCK
CALL 4023H ; write sector to disk
OR A ; error occurred?
JP NZ,400EH ; yes, to the ERROR routine
CALL 400BH ; turn off drive
El ; enable interrupts again

The data from the data buffer is written to track 5, sector 10 of the
floppy disk in drive 1.

Internally called routines: IDAM

-122 -

READ - Read sector from disk
Call: CALL 4035H
Input: The drive must be powered on.
Address of the sector to be read in SCTR (IY+17) and TRCK (IY+18) of
the DOS vectors.
RETRY (IY+19) = number of read attempts
Exit: The read sector is in the data buffer.
Registers used: AF, BC, DE, HL
Error handling: A =0 Ok, sector was read
A =9 An address mark was not found

A =10 Checksum wrong
A =17 BREAK key pressed

The sector addressed with SCTR and TRCK is transferred from the diskette to
the data buffer.

The checksum is determined and compared at the end of the sector with the
value stored there.

In the RETRY (IY+19) field of the DOS vectors you can specify how many
read attempts should be made if the checksum is incorrect (default value =
10).

Example:

DI ; disable interrupts

LD (IY+11),80H ; select Drive 2

CALL 4008H ; and turn on

LD BC,50 ; 50 ms delay

CALL 4038H

LD (IY+17),14 ; set Sector Number in SCTR
LD (IY+18),28 ; set Track Number in TRCK

-123 -

CALL 4035H ; read sector

OR A ; error occurred?

JP NZ,400EH ; yes, to the ERROR routine
CALL 400BH ; turn off drive

El ; enable interrupts again

Sector 14 data on track 28 is transferred from the disk in drive 2 to the
data buffer.

Internally called routines: IDAM

DLY - n milliseconds delay
Call: CALL 4038H
Input: BC = number of milliseconds.
Exit: -
Registers used: AF, BC
Error handling: -

This routine causes a delay whose duration in milliseconds is determined by
the entry in the register pair BC.

Example:
DI ; disable interrupts
LD BC,1000 ; 1 sec delay
CALL 4038H
El ; enable interrupts again

Causes a delay of one second.

-124 -

STPIN - Advance read/write head n tracks

Call: CALL 403BH

Input: The drive must be powered on.
B = number of tracks

Exit: The read/write head was set in front of the corresponding
number of tracks.
DTRCK (IY+20) contains the new current track number.

Registers used: AF, BC

Error handling: -

The read/write head is advanced by the number of tracks contained in B, but
up to track 39 at most.

Example:
DI ; disable interrupts
LD (IY+11),10H ; select Drive 1
CALL 4008H ; and turn on
LD BC,50 ; 50 ms delay
CALL 4038H
LD B,10 ; put head in front of tracks
CALL 400BH ; turn off drive
El ; enable interrupts again

-125 -

STPOUT - Reset read/write head n tracks
Call: CALL 403EH
Input: The drive must be powered on.
B = number of tracks

Exit: The read/write head was reset the corresponding number of tracks.
DTRCK (IY+20) contains the new current track number.

Registers used: AF, BC

Error handling: -

The read/write head is reset by the number of tracks contained in B, but up to
track O at most.

Example:
DI ; disable interrupts
LD (IY+11),10H ; select Drive 1
CALL 4008H ; and turn on
LD BC,50 ; 50 ms delay
CALL 4038H
LD B,5 ; reset head 5 tracks
CALL 403EH
CALL 400BH ; turn off drive
El ; enable interrupts again

-126 -

LOAD - Loading a program or memory area

Call: CALL 4041H

Input: Filename in FNAM (IY+1)
Filoe Type in TYPE (IY+9)

Exit: 78A4/A5 = starting address
78F9/FA = ending address + 1

Registers used: AF, BC, DE, HL

Error handling: A=0 Ok
A =9 An address mark was not found
A =10 A checksum error
A =12 File found but wrong type
A =13 File does not exists
A =17 BREAK key pressed

The program specified in the FNAM field is transferred from the diskette to the
memory.

After successful completion, the start address and the end addresst+1 of the
memory area are transferred in the BASIC communication area at address
78A4/A5 and at address 78F9/FA.

This routine only works with files that contain the start address in bytes 12 and
13 of the table of contents and the end address + 1 in bytes 14 and 15, ie not

with standard data files.

If a program is saved with the BASIC commands SAVE or BSAVE or by
machine programs with the routine SAVE, this entry is made automatically.

The LOAD routine automatically turns the drive on and off and also turns off
interrupts.

-127 -

Example:

LD (1Y+11),80H ; select Drive 2

LD HL,DNAM ; filename to FNAM

CALL 401DH ; register

LD (IY+9),’B’ ; file type ‘B’ (binary)

CALL 4041H ; load program

OR A ; error occurred?

JP NZ,400EH ; yes, to the ERROR routine

El ; enable interrupts again
DNAM DEFM ““GRAFDR”’

The binary file or machine program "GRAFDR" is transferred from the
floppy disk in drive 1 into memory.

Internally called routines: SEARCH
READ

SAVE - Saving a program or memory area to floppy disk

Call: CALL 4044H

Input: 78A4/A5 = Start address of the memory area
78F9/FA = End address+1 of the memory area

The drive must be powered on.

FNAM (IY+1) = file/program name
TYPE (IY+9) = type of file

Exit: The addressed memory area was transferred to the diskette
and entered in the table of contents under the specified name.

Registers used: AF, BC, DE, HL

-128 -

Error handling: If errors occur, the SAVE routine branches directly
to the ERROR routine. Own error handling is not possible.

A memory area or program is transferred from memory to floppy disk. Start
and end addresses of data to be transferred are in the corresponding BASIC
pointers 78A4 and 78F9.

This adresses are entered in the table of contents under the name specified in
FNAM and the type entered in the first byte of TYPE.

You must first switch on the floppy disk yourself; it is turned off by the SAVE
routine when the save process is complete.

You should also check the write protection beforehand.

Example:
LD HL,8000H ; start address
LD (78A4),HL
LD HL,9000H ; end address + 1
LD (78F9),HL
LD HL,DNAM ; filename to FNAM
CALL 401DH ; register
LD (IY+9),’B’ ; file type ‘B’ (binary)
LD (IY+11),10H ; select Drive 1
CALL 4008H ; and turn on
IN A,(13H) ; check write protection
OR A
LD A4
JP M,400EH ; read only, to the ERROR routine
CALL 4044H ; write memory area to diskette
El ; enable interrupts again
DNAM DEFM “TESTDAT””’

The Speicherhereich 8000 - 8FFF is transferred to the diskette under
the name "TESTDAT" with type "B".

Internally called routines: READ CREATE
MAP SEARCH
WRITE

-129 -

To supplement these routines, two more functions are listed here that you will find in
many of the previous examples.

DRIVE - Selecting a drive

This function cannot be accessed via the jump table.

However, it is easy to do as you just need to put the correct code of the
selected drive in the DK (IY+11) field of the DOS vectors.

Drive 1 LD (IY+11),10H

Drive 2 LD (IY+11),80H

This code is used by the PWRON routine to select the correct drive and turn it
on.

WPROCT - Check write protection

In many cases, you are responsible for checking the write-protection status of
a diskette before performing a write operation.

You can get the information about this via port 13H. If the diskette's
write-protection notch is taped over, bit 7 of this port is set to 1.

To do this, the drive must be selected and switched on.

- 130 -

Example:

IN A,(13H) ; read in port 13

OR A ; check byte

LD A4 ; set error code

JP M,400EH ; if negative, then the disk is

; write-protected.

If the diskette is write-protected, error code 4 branches to the ERROR routine
and the message "DISK WRITE PROTECTED" is output there.

-131 -

Mein Home-Computer

Monat fiir
Monat liber
30 Seiten
Programme

_Mein Home-Computer |

 jeden Monat:

** Programme fiir alle gangigen Home-Computer

** Anwendungsbeispiele aus der Praxis

** Marktibersicht, Tests und Kaufberatung fiir Zusatzgerite
und Home-Computer

#* Schnellkurse fur Einsteiger zum Sammeln

* Tips und Tricks

* Interessantes, Aktuelles und Unterhaltsames aus der
Home-Computer-Szene

#* News, Clubnachrichten
Holen Sie sich die neueste Ausgabe bei Ihrem Zeitschriften-
handler oder fordern Sie ein Kennenlernheft direkt beim Vogel-
Verlag, Leserservice HC, Postfach 67 40, 8700 Wiirzburg, an.

Die Einsteiger-Modelle fiir Schiiler und Studenten

LASER 210, 8 KByte RA
rweiterbar um 16 oder 64 KByte,
8 Farben, Programmsprache BASIC.

LASER 310 mit gleicher Ausstattung wie Laser 210
aber 18 KByte RAM und mit Schreibmaschinen-Tastatur.

Floppy Disk Controller fir 2 Laufwerke
mit LASER-DOS, Speicherkapazitat 80 KByte.

Generalimporteur: CE o TEC Trading GmbH

Lange Reihe 29, 2000 Hamburg 1

aktiv und kreativ computern

Friher oder spater wird bei jedem Computerbesitzer der
Wunsch nach einem Diskettenspeicher tberméachtig. Zu grof3
sind die Vorteile des direkten Zugriffs gegenuber der
sequentiellen Arbeitsweise. Nur so kann man alle
Mdoglichkeiten seines Gerats voll ausschopfen.

In diesem Band wird das Disketten-Betriebssystem des
Laser-Computers in seinem Aufbau und seiner Anwendung
detailliert beschrieben. Neben den BASIC-DOS-Befehlen
werden auch die Schnittstelle und Anwendbarkeit in
Maschinenprogrammen erlautert. Anwendungsbeispiele
erleichtern den Einstieg in die Diskettenwelt.

@ VOGEL-BUCHVERLAG
WURZBURG

ISBN 3-8023-0868-9

-134 -

