

FIRST EDITION 1985

National Library of Australia and ISBN 0 949772 35 6

Copyright (C) 1985, DICK SMITH MANAGEMENT PTY LTD.

This publication is protected by copyright. No part of this book may be copied by any means, whether
Photographic, printing, electronic, magnetic or other technology without the prior written consent of Dick Smith
Management Pty Ltd, PO Box 321, North Ryde NSW 2113 Australia.

FOREWORD

This manual is intended to provide owners of the VZ200/300 series of personal colour computers with additional
information to assist in programming, operation and expansion. All reasonable care has been taken to ensure that
the information contained herein is accurate and correct; however no responsibility can be accepted, nor liability
assumed for either its accuracy or suitability for any particular purpose. Dick Smith Management Pty Ltd reserves
the right to make circuit, software and/or mechanical changes to the products described herein, without notice.

Although much of this information contained herein will be of interest to all VZ200/300 owners, it is assumed that
the reader is reasonably familiar with the technicalities of digital computer electronics. It is strongly
recommended that owners without suitable experience in the field of computer service techniques not attempt to
repair or modify their computer's equipment.

CONTENTS
.HARDWARE

The Basic Computer………………………………………………………………………………………. 1
Specifications……………………………………………………………………………………………... 1
Power Supplies……………………………………………………………………………………………. 2
CPU and Associated Circuitry……………………………………………………………………………. 2
RAM and ROM……………………………………………………………………………………………3
Memory Map………………………………………………………………………………………………4
Keyboard…………………………………………………………………………………………………..5
Video Circuitry………………………………………………………………………………………….…6
i/o mapping………………………………………………………………………………………………...9
Cassette, Speaker, VDP Control Latch……………………………………………………………………10
Joysticks……………………………………………………………………………………………………10
Disk Controller……………………………………………………………………………………………. 11
Disk Drive………………………………………………………………………………………………….11
Disk Drive Adjustments……………………………………………………………………………………14

SOFTWARE

Screen Control Codes………………………………………………………………………………………20
System Pointers…………………………………………………………………………………………….20
Reserving Space for Machine Code Programs…………………………………………………………..…21
Finding Top of Memory……………………………………………………………………………………24
Calling Machine Code Subroutines from Basic……………………………………………………………25
Useful ROM Subroutines for Assembly Programming…………………………………………………….26
Disk Operating System (DOS) Analysis……………………………………………………………………30
DOS Entry Points & Subroutines….………………………………………………………………………..33
Video Worksheets & Schematic Circuits.………………………………………………………………..…39

THE BASIC COMPUTERS

The VZ200/300 computers employ a Z80A microprocessor running at approximately 3.6MHz.
A Microsoft Basic interpreter and I/O routines are contained in 16K of mask-programmed ROM.
Included in the computers are user RAM, a PAL colour video display circuit, a VHF RF modulator,
a "QWERTY" keyboard, a cassette interface and a simple sound effects circuit.
Also included is provision for memory and I/O expansion via two rear edge connectors.
Devices which can be plugged into these connectors include a 16K RAM expansion cartridge,
printer interface, floppy diskette interface and game joysticks.

SPECIFICATIONS

 VZ200 VZ300

 CPU Z80A Z80A

 CLOCK SPEED 3.58MHz 3.54MHz

 INTERNAL ROM 16K 16K

 INTERNAL RAM 6K 16K

 DISPLAY RAM 2K 2K

 SCREEN FORMAT MODEO 16 lines of 32 characters. 128,upper-case
 text characters in normal or inverse
 format plus 128 2 pixel X 2 pixel chun y
 graphics characters in 8 colours.

 MODE1 64 rows of 128 individually addressable
 pixels in 4 colours.

 VIDEO OUTPUT 1V p-p into 75 ohms composite video,
 negative sync. PAL colour encoded.

 RF OUTPUT lmV into 75 ohms VHF Ch. 1 (57.25Mhz) PAL
 colour encoded.

 KEYBOARD 45 key "QWERTY" style.

1

POWER SUPPLIES

The computer is powered from a 10-12V 800MA d.c. source. Normally this will be an approved "plug-pack" although
battery powered operation is also possible. In both models the raw d.c. input is regulated by a 3 terminal regulator IC to 5V
d.c. which powers most of the internal circuitry.

In the VZ200, the colour encoder circuitry requires a +12V rail which is generated from the +5V rail by a regulating inverter
circuit.

In the VZ300, additional supply rails of +12V and -5V are required to power the dynamic RAMS. These voltages are
generated from the raw d.c. supply by an inverter circuit comprising Q2, Q3 and associated components.

CPU AND ASSOCIATED CIRCUITRY

The CPU is clocked by a 3.5795MHz crystal oscillator, comprising 3 inverters (Ul3).

The -RESET pulse is generated by a simple RC circuit and buffered by 2 inverters (Ul3).

The -INT input is activated during screen retrace periods by the video circuitry. The interrupt is serviced by a ROM routine
which performs some housekeeping and provides a user book. The condition of the -INT input can also be sampled as bit 7
during reads of the keyboard addresses (680OH-6FFFH).

The signals, -NMI, -WAIT, -RFSH, -Ml, -HALT, and -IORQ are not used within the machine but are available at the rear
expansion connectors, as are all of the Z80 address, data,,control and status signals with the exception of -BUSACK and -
BUSREQ.

VZ300

The VZ300 differs in the following ways.

The CPU is clocked at 3.5469MHz. This is obtained by division of the master oscillator by 5 within UIO. The 17.734MHz
master oscillator, comprising 3 inverters (u9), is also divided by 4 to provide the 4.43362MHz PAL subcarrier.

The RC derived -RESET pulse is buffered by 2 inverters of U9.

2

RAM AND ROM

VZ200
6K of program RAM is provided, implemented as three 2K x 8 static RAMS (U2', U3', U4') mounted on a small daughter
board. U2' occupies addresses 780OH-7FFFH and is enabled by the address decoder circuit on the main pcb (U2, U3). U3'
and U4' occupy addresses 800OH-87FFH (U3') and 880OH-8FFFH (U4') and are enabled by Ul'.

Another 2K x 8 RAM (U7) is used for the video display buffer. The video RAM occupies addresses 7600H,-77FFH and is
enabled for CPU access by U2 and U3. For CPU reads, the video RAM data is buffered by U14. The video RAM address
lines are decoupled from the CPU address lines by series resistors to avoid conflicts between the CPU and the Video Display
Processor (Ul5) at times other than CPU access to the video RAM.

The BASIC interpreter and I/O routines are contained in 16K of ROM addressed in the range OOOOH-3FFFH. In early
VZ200s this is implemented as two 8K x 8 devices (U9, U10). U9 occupies addresses,0000-lFFFH and U10 occupies
200OH-3FFFH. Later machines use a single 16K x 8 ROM. To address the larger ROM over the 0000-3FFFH range, A13
is taken to the ROM (pin 26) and the ROM chip select (pin 20) is generated by 'ORing' the two ROM select signals from U3
with a pair of diodes.

VZ300

16K of program RAM is provided implemented as eight 16K x 1 dynamic RAMS (Ul-B). The RAM occupies the 16K
address block 780OH-B7FFH. A custom gate array (UlO) contains all of the necessary circuitry to enable the RAM,
multiplex the CPU address and provide the correct -CAS and refresh timing.

A 2K x 8 RAM (Ul6) is used for the video display buffer. The video RAM occupies addresses 700OH-77FFH and is
enabled for CPU access by the address decoder within U14. For CPU reads, the video RAM data is buffered by U14. The
video RAM address lines are decoupled from the CPU address lines by series resistors to avoid conflicts between the CPU
and the Video Display Processor (Ul5-) at times other than CPU access to the video RAM.

The BASIC interpreter and I/O routines are contained in a single 16K x 8 ROM enabled for the 0000-3FFFH address range
by address decoding circuitry within U13.

3

THE KEYBOARD

The 45 keys are arranged in a 6 x 8 matrix. Each of the 8 rows effectively occupies a specific memory address (actually, a
series of addresses due to the simplified decoding) in the range 6800-6FFFH. The individual keys are mapped onto the least
significant 6 bits of that location, according to the column they occupy.

The 8 least significant bits of the address bus pull down the rows of the matrix through diodes. The keyboard is scanned by
software sequentially taking each of these 8 lines to a logic low level. If the upper 8 address lines represent 68H (or, in fact,
69H-6FH) then the condition of.the 6 key columns o the particular row will be enabled onto the data bus through U12.

For example, if the '2' key were pressed, it would cause bit 1 at address 68V7H to drop to 0. The data retrieved by reading
that address, neglecting the 2 most significant bits which are not driven by the keyboard, would be 3DH (binary 111101).

The keyboard matrix and its (lowest) row addresses are shown below. Note that each key causes a logic 0 to appear at the bit
position shown, when its row address is read.

 ROW BIT POSITION
 :ADDRESS : 5 4 3 2 1 0

 68FEH : R Q E w T

 68FDH : F A D CTRL 5 G

 68FBH : V z C SHFT x B

 68F7H : 4 1 3 2 5

 68EFH : M SPC N

 : 68DFH 7 0 8 9 6

 : 68BFH U p I RETN 0 y

687FH J K L

 --
VZ300

The VZ300 keyboard is logically the same as the VZ200, although it is read through a custom I/O IC (14). Physically the
VZ300 keyboard differs in that it uses the more common, moulded keys and has a full space bar.

5

THE VIDEO INTERFACE

The heart of the video interface is a 6847 video Display processor. This IC contains the upper-case ASCII and chunky
graphics character generator, and, logic to produce the dotaddressable graphics, the video timing signals, the video RAM
control and address signals, a video luminance (Y) output and 2 matrixed colour outputs (R-Y and B-Y)

5OHz SYNC.GENERATION

The 6847 is intended to produce 6OHz vertical synchronization signals and 262 lines per field. In order to produce 5OHz
312 line video signals, 50 extra lines must be added to each field. This is achieved by 3 counters, U18, U20, U21 and
associated logic.

When the VDP outputs -FS, the reset inputs to U20 are released, allowing it to count video lines from the VDP. U20 counts
the first 25 lines of the bottom border and then inhibits the 3.58MHz video clock via U16 and U19. Instead of clocking the
VDP, the clock is fed to U18 which is configured as a divide-by-228 counter. U18 generates horizontal sync pulses
(between clock edges 208 and 228) during the period that the VDP is disabled. U21 counts these "dummy" video lines.
When 25 additional lines have been completed, the clock is switched back to the VDP. The VDP generates a further 7 lines
before resetting -FS. This again inhibits the VDP and allows U18, U21 etc. to insert a further 25 "dummy" lines. The VDP
is then allowed to operate as normal for the next 230 lines after which the cycle repeats itself. In summary, starting from the
falling edge of -FS, the 312 line cycle is as follows:

 -25 lines of bottom border (from VDP)
 -25 lines of bottom border (from U18 etc.)
 -1 line of bottom border (from VDP)
 -6 lines vertical retrace (from VDP)
 -13 lines of blanking (from U18 etc.)
 -12 lines of top border (from U18 etc.)
 -38 lines of top border (from VDP)
 -192 lines of active display (from VDP)

VIDEO DISPLAY MODES

The video interface operates in one of two modes, text/low-res graphics (MODE 0) or hi-res (MODE 1). The display mode
is determined from the -A/G input on the VDP (pin 35). This input is controlled by bit 3 of the Cassette/speaker/VDP
control latch. If bit 3 is set then MODE 1 is enabled.

6

MODE 0

In MODE 0 the screen is organised as 16 rows of 32 characters. Each screen location is represented by a unique memory
location in the first 512 bytes of the video RAM (i.e. 7000H - 71FFH, or 28672 - 29183 decimal).

The background colour in this mode is determined by the condition of pin 39 of the VDP (CSS). If CSS is set, then the
background colour is orange; if it is reset then the background is green. CSS is controlled by bit 4 of the
Cassette/speaker/VDP control latch.

A total of 256 different characters can be displayed consisting of 64 upper-case characters, the same 64 characters in inverse
format and 128 lo-res graphic characters. Bit 7 of the video character data determines whether the character is text (bit 7=0)
or graphic (bit 7=1).

If bit 7 is reset, indicating a text character, then bit 6 determines whether it is displayed in normal (bit 6=0, light on dark) or
inverse (bit 6=1, dark on light) format. The remaining 6 bits are the character code.

If bit 7 is set, indicating a graphic character, then bits 4, 5 and 6 indicate the colour of the character and bits 0, 1, 2 and 3
determine its shape. Each of the 4 least significant bits corresponds to a pixel in a 2 x 2 matrix which occupies the same
screen area as a text character.

The 3 bit colour code is: Bits 0-3 of the graphics character code are mapped onto

B6 B5 B4 HEX COLOUR pixels as shown below:

· 0 0 00 Green
 0 0 1 10 Yellow
 0 1 0 20 Blue B3 B2
 0 1 1 30 Red
 1 0 0 40 Buff Bl BO
 1 0 1 50 Cyan
 1 1 0 60 Magenta
 1, 1 1 70 Orange

7

MODE 1

In this mode the screen is organized as 64 rows of 128 pixels, giving a total of 8192 pixels. Each pixel can be displayed in
one of four corners, one of which is the background colour. This means that for each of the two possible background
colours, each pixel can be either 'turned off' (ie the same colour as the background), or displayed in one of three colours.

The video RAM coding scheme used for this display mode uses each byte to encode four adjacent pixels. This means that
each pixel is encoded in two bits. To illustrate this, here is the coding for the first four pixels on the screen, in the top left
hand corner:

ADDRESS 700OH: B7 I B6 I B5 I B4 I B3 I B2 Bl
The next four pixels along the line are stored in location 7001H, and so on. The 2-bit colour coding used for each pixel is
shown below:

(i) Background colour 0 (green):

00=GREEN (background colour)
01=YELLOW
10=BLUE
ll=RED

(ii) Background colour 1 (buff):

00=BUFF (background colour)
01=CYAN
10=ORANGE
ll=MAGENTA

Note that from BASIC, any pixel may be individually turned on or off usinia the SET(x,y) and RESET(x,y) commands, and
given various colours using the COLOR(m,n) command.

Video display worksheets for both mode(o) and mode(l) are given at the rear of this manual. These can be very handy for
planning the display screens, menus etc when you are writing programs. Feel free to photocopy these worksheets, so you
can use the photocopies in this way.

8

I/O MAPPING

The Z80A microprocessor in the VZ200/300 can address 256 ports in I/O space (ie ports 0 - FF hex). The following I/O
address ranges have been allocated for expansion peripherals:

I/O ADDRESS (hex) DEVICE

 00 OF Printer
 10 1F Floppy disk controller
 20 2F Joystick interface
 30 3F Communications MODEM
 70 7F Memory bank switch

VZ200/300 CASSETTE/SPEAKER/VDC OUTPUT LATCH

An internal latch is used to generate the cassette output, the drive for the internal piezo speaker, and two control signals for
the video display controller chip (6847). The latch is write-only and memory-mapped occupying all addresses from 6800H -
6FFFH (26624 - 28671 decimal) inclusive. In the VZ200 this latch is Ul (74LS174), whereas in the VZ300 this latch is part
of U14 (the GA004 LSI). A bit-map of the latch is shown below:

WEIGHTING BIT FUNCTION
Hex Dec

20 32 5 Speaker B

10 16 4 VDC Background 0 green

1 orange (text) buff (graphics)

08 8 3 VDC Display Mode 0 mode 0, text / low res.

 1 mode 1, graphics / hi-res.

04 4 2Cassette out (MSB)

02 2 1Cassette out (LSB)

01 - 1 0Speaker A

i)-speaker

The speaker is driven in push-pull fashion by bits 0 and 5. To make the speaker sound a note, the software should toggle bits
0 and 5 alternately at the required rate. ie when bit 0 is a logic Oil, bit 5 should be logic 'O' and vice-versa. Note that when
this is done the software should not alter the other bits of the latch.

9

ii) Cassette output

Bits 1 and 2 are used to generate the cassette recording signal, which is approximately 200 millivolts peak-to-peak.

iii) VDC display mode

The VDC display mode is controlled by bit 3. If bit 3 is a logic 10', the VDC will operate in its text/low-resolution mode. If bit 3 is made
logic '1', the VDC operates in its hi-res graphics-only mode.

iv) VDC background colour control

Bit 4 is used to control the VDC background colour. In text/low-
res mode (mode 0), a 'O' on bit 4 gives a green background colour
while a '1' on bit 4 gives an orange background. In hi-res mode (mode 1) a 'O' on bit 4 gives a green background, while a '1' gives a buff
background.

JOYSTICKS

The two Joystick units are connected to a plug-in module that contains I/O address decoding and switch matrix encoding. IC U2
(74LS138) enables I/O reads between 20 - 2F Hex. Address lines AO - A3 are used separately to generate active LOW signals on the
joystick or switch to be read. Switch state is then read at the resultant address from Data bits DO - D4. When a switch is ON it provides
an active-low Data bit. As below:

1 Right-hand joystick, 2 = Left-hand joystick

 I/O Address Hex Joystick Switch Data (Hex)

 2E (46 dec.) 1 Up FE
 1 Down FD
 1 Left FB
 1 Right F7
 1 Fire EF

 -2D (45 dec.) 1 Arm EF

 2B (43 dec.) 2 Up FE
 2 Down FD
 2 Left FB
 2 Right F7
 2 Fire EF

 27 (39 dec.) 2 Arm EF

10

VZ200/300 DISK CONTROLLER

This is a plug-in port-mapped device capable of supporting two X7302 disk drives. The Disk Controller occupies
the I/O address space from 10 Hex to 1F Hex of the port map. Effectively only 4
 I/O locations are used to control and read back data from the
 Disk Drives.

 I/O address Function

 10 Hex Latch (write-only)

 Bit 0 -.Bit 3 :Stepper-motor control
 phases (active HIGH)
 Bit 4 : Drive 1 enable.(active LOW)
 Bit 5 : Write data (active HIGH)
 Bit 6 : Write request (active LOW)
 Bit 7 : Drive 2 enable (active LOW)

 11 Hex DATA (read-only)

Bit 0 - 7 : Data byte read from disk

12 Hex POLLING (read-only)
 Bit 0 - 6 not used
 Bit 7 clock bit polling input

 13 Hex WRITE PROTECT STATUS (read-only)

 Bit 0 - 6 : not used
 Bit 7 : 1 = write-protect
 0 = no write-protect

VZ200/300 DISK DRIVE

General Operation

The X-7302 VZ200/300 floppy disk drive consists of read/write, control and drive motor electronics, drive
mechanism, read/write head, and track positioning mechanism. These components perform the following
functions:

i) Receive and generate control signals
ii) Position of the read/write head to the desired track
iii) Read/write of data
iv) Control of drive motor speed

11

(a) READ/WRITE and CONTROL ELECTRONICS The three electronic boards contain:
i) Stepper motor driver
ii) Write amplifier
iii) Read amplifier and control circuits
iv) File protect sensor
v) Drive enable circuit
vi) Drive motor control circuit

(b) DRIVE MECHANISM

The drive motor rotates the spindle at 85 rpm through a beltdrive system. The speed of the motor is controlled
by a tachofeedback servo circuit. A hub clamp that moves in conjunction with the door closure mechanism
centres and clamps the floppy disk onto the spindle hub.

(c) R/W HEAD POSITIONING MECHANISM

The R/W head is positioned to the desired track by applying the control signals to the stepper motor. The
connection between the head carriage and the stepper motor is through a steel belt. The stepper motor rotates 2
steps per track.

(d) R/W HEAD

The R/W head is used to read/write data to and from the floppy disk. The R/W head is mounted on the head
carriage which moves on rails and is positioned by the stepper motor. The floppy disk is held on a plane
perpendicular to the R/W head.

(e) TRACK 0 STOPPING MECHANISM

After powering on and track location failure, the position of the R/W head is indeterminant. In order to assure
proper positioning of the R/W head after powering on, a step-out operation (recalibration) is performed until it is
locked at track 00 by the track 00 stopper.

(f) DRIVE SELECTION

The drive is selected by activating the -BENBL line. After being selected, the drive motor and the LED on the
front panel bezel will be on.

12

(g) FILE PROTECTION MECHANISM

The file protect mechanism is constructed with a LED and phototransistor to detect the existence of the write enable
notch of the disk jacket. When a disk with the notch covered is installed and the light passing for detection is disturbed,
no write or erase current will flow through the R/W head. The recorded information on the disk is protected from an
erroneous input of a write command.

FUNCTION-of TEST POINTS and VARIABLE RESISTORS

The diagram below shows the mounting position of the test points and the variable resistors.

J3J2J4

FUNCTION of TEST POINTS

i) TP1, TP3 PCBA Control and R/W amplifier.

Test points for observing the read pre-amplifier output signals after passing through the low-pass filter. Hence TP1 and
TP3 are used for the check and adjustment of the head seek mechanism. ie track alignment.

For observation of the read waveforms, use two channels of an oscilloscope with one channel set to INVERT mode and
then ADD both channels. Use test point TP2 for the oscilloscope ground. This method will display full 'balanced'
signal, if these modes are unavailable on oscilloscope then observe waveform using single oscilloscope channel from
either TP1 or TP3 and TP2 as ground.

ii) TP2, TP5 are both system ground terminals.

iii) TP6 is a test point for observing read data pulses.

iv) TP4 is not used.

13

FUNCTION of VARIABLE RESISTORS

i) VR1 PCBA control and R/W amplifier

VR1 is used for adjusting peak shift of the read data.

ii) VR2 PCBA drive motor

VR2 is used for adjusting the rotational speed of the spindle.

TROUBLESHOOTING GUIDE
TOOLS and EQUIPMENT

i) Dual channel oscilloscope with Differential Mode input (ie ADD, INVERT), of 1OMHz or better
ii) Frequency counter
iii) VZ200/300 and Disk Controller
iv) Software: DISK CONTROL program (for controlling the stepping motor to move the R/W head for alignment and

TRK 00 recalibration). Refer to suggested listing)
v) DYSAN 48 TPI alignment disk. (#206-10)
vi) Cleaning disk (if available)
vii) Working disk
viii) Another VZ200/300 Disk Drive (used as working disk)
ix) Screwdrivers: PHILIPS screwdriver, 5mm

Blade screwdriver, 3mm
X) Hexagon wrench key, 1.5mm
xi) Locking agent (ie nail-polish)

GENERAL PROCEEDURE

i) Remove the top and bottom cases by removing securing screws under unit.

ii) Set up the computer with the working drive as Drive 1 and the Drive under test as Drive 2.

iii) Connection and disconnection of connectors.
Note-complete orientation and position of connectors before removing-them. Be sure to turn the power OFF before connecting
or disconnecting the connectors. When plugging or removing connectors, this should be done without applying excessive force
to the cables or post pins.

iv) If the LED on the front bezel is ON but the Drive Motor remains stationary, check that the connectors are securely
connected.

14

CHECK and ADJUSTMENT of DISK ROTATION SPEED.

i) Install Alignment Disk in disk drive to be checked. Select DRIVE by typing DIR command.

ii) Use the Frequency Counter to monitor the output of test point
TP1 (Ground on TP2).

iii) The reading of the frequency counter should be 35.417 kHz.
If the frequency is off by more than 1 kHz (approx 3%) then adjust VR2 on the Drive Motor PCB.

iv) After checking that this measurement is satisfactory, fix VR2 with a small drop of locking agent.

CHECK and ADJUST of TRACK ALIGNMENT

i) connect two channels of the oscilloscope to TP1 and TP3 on the Control and R/W amplifier PCB.

ii) oscilloscope setting:2OmS/division, CH.A and CH-B both AC mode .5V/division

iii) Set one Channel to INVERT and.ADD both channels.

iv) Load the DISK DRIVE CONTROL program.
v) Install the Alignment disk in the Drive to be tested.
vi) Using the control program, send the head carriage to TRK 16.

vii) The lobe patterns displayed should be within 70% of each
other, see diagrago below. If they are, then no adjustment is required. If they are not, then proceed with
adjustment.

15

viii) Loosen the stepper-motor fixing screws and while observing the waveform, turn the stepper motor to correct the lobe pattern.

ix) Check that the adjustment is stable by stepping off TRK 16 in both directions and returning.

x) once corrected and stable, tighten the stepper-motor fixing screws, and seal with a small amount of locking agent.

CHECK of FILE PROTECT SENSOR

i) Load Disk control Program

ii) Insert a work disk without a write-protect tab, halfway into
the disk drive.

iii) Use the 'P' command to check the drive status. The message 'DISK IS WRITE PROTECTED' should appear.

iv) Now fully insert and close door, the message 'DISK IS NOT WRITE PROTECTED' should appear.

NOTE: If any of the above adjustments do not rectify the Disk
Drive's problem, then return the Drive to a Dick Smith Service
Dept for a detailed diagnosis.

PREVENTIVE MAINTAINANCE

If the DISK DRIVE is used in a dusty environment, it is suggested that a periodic cleaning is made of the magnetic-head suface.

i) Setup DISK DRIVE in position 2.

ii) If a CLEANING DISK is available, insert this and using the DISK CONTROL program move the R/W HEAD between track
00 and the innermost track several times.

iii) If CLEANING DISK is unavailable. Remove covers to gain access to R/W HEAD assembly.

iv) Use a cotton swab lightly dampened with pure alcohol. Carefully lift the HEAD LOAD PAD ARM and clean the R/W Head
and surrounding area. Wipe the HEAD surface with a clean dry cloth after the alcohol has evaporated. Be sure to inspect the area for
dirt or fluff left on the HEAD surface, before letting the HEAD LOAD PAD ARM down.

v) Reassemble and check for normal operation.

16

LISTING OF DISK CONTROL PROGRAM

10 REM DISK CONTROL PROGRAM
20 REM A. LATCH CONTROL -----
30 REM I/O ADR:10H
40 REM BIT 0 - BIT 3:
50 REM STEPPER PHASE CONTROL
60 REM BIT 4:DRIVE 1 ENABLE
70 REM BIT 5:WRITE DATA
80 REM BIT 6:WRITE REQUEST
90 REM BIT 7:DRIVE 2 ENABLE
100 REMB. DATA STROBE -----
110 REMI/O'ADR : 11H
120 REMBIT 0 - BIT 7:
130 REMDATA BYTE READ FROM
140 REMDISK DRIVE
150 REM
160 REMC. POLLING -----
170 REMI/O ADR : 12H
180 REMBIT 0 - BIT 6:
190 REMNOT USED
200 REMBIT 7: CLOCK BIT
210 REMPOLLING INPUT
220 DIM D(4)
230 CLS
240 PRINT:PRINT TAB(6)"DISK CTRL PROGRAM"
250 PRINT
260 PRINT:PRINT TAB(6)"COMMANDS:"
270 PRINT:PRINT TAB(6)"R RECALIBRATION"
280 PRINT TAB(6)"G GOTO TRACK
290 PRINT TAB(6)"I STEP IN
300 PRINT TAB(6)"O STEP OUT
310 PRINT TAB(6)"P CHECK WRITE PROTECT"
320 PRINT TAB(6)"Q QUIT"
330 PRINT:INPUT "COMMAND ";A$
340 IF A$="R" THEN GOSUB 410
350 IF A$="I" THEN GOSUB 560
360 IF A$="O" THEN GOSUB 700
370 IF A$="G" THEN GOSUB 900
380 IF A$="Q" THEN GOSUB 870
390 IF A$="P" THEN GOSUB 1070
400 GOTO 330
410 REM - RECALIBRATE R/W HEAD
420 P=O
430 OUT 16,192
440 FOR J=l To 24
450 FOR I=3 TO 0 STEP -1
460 D(I)=l:GOSUB 1050
470 OUT 16,192+LA
480 D(I)=O:GOSUB 1050
490 OUT 16,192+LA

17

500 NEXT
510 NEXT
520 D(O)=l:D(1)=O:D(2)=O:D(3)=O
530 OUT 16,193
540 TC=O
550 GOSUB 840:RETURN
560 REM MOVE THE R/W HEAD TO
570 REM INNER TRACKS
580 IF TC=39.5 THEN RETURN
590 D(P/2)=O
600 GOSUB 1050
610 OUT 16,192+LA
620 P=P+2
630 IF P=8 THEN P=O
640 D(P/2)=l
650 GOSUB 1050
660 OUT 16,192+LA
670 TC=TC+.5
680 GOSUB 840
690 RETURN
700 REM - MOVE THE R/W HEAD
710 REM TO THE OUTER TRACKS
720 IF TC=O THEN RETURN
730 D(P/2)=O
740 GOSUB 1050
750 OUT 16,192+LA
760 P=P-2
770 IF P=-2 THEN P=6
780 D(P/2)=l
790 GOSUB 1050
800 OUT 16,192+LA
810 TC=TC-.5
820 GOSUB 840
830 RETURN
840 REM - SHOW TRACK NUMBER
850 PRINT "TRACK = ";TC
860 RETURN
870 REM - EXIT THE PROGRAM
880 OUT 16,40:END
890 REM - MOVE THE R/W HEAD TO THE DESIRED TRACK
900 INPUT "ENTER TRACK NUMBER =";TN
910 IF (TN>39.5) OR (TN<O) THEN GOTO 900
920 TT=TN-TC
930 IF TT<=O THEN 990
940 TT=TT*2
950 FOR CN=l TO TT
960 GOSUB 560
970 NEXT
980 RETURN
990 IF TT=TC THEN RETURN

18

1000 TT=TT*(-2)
1010 FOR CN=l TO TT
1020 GOSUB 560
1030 NEXT
1040 RETURN
1050 IA=D(3)*8+D(2)*4+D(1)*2+D(O)
1060 RETURN
1070 WP=INP(19)
1080 IF WP>127 THEN PRINT "DISK IS WRITE-PROTECTED"
1090 IF WP<128 THEN PRINT "DISK IS NOT WRITE-PROTECTED"
1100 RETURN

19

VZ200/300 SCREEN CONTROL CODES

The following codes can be used for screen control from BASIC:
 Cursor left PRINTCHR$(8) Cursor right PRINTCHR$(9)
 Cursor up PRINTCHR$(27) Cursor down PRINTCHR$(10)
 Rubout PRINTCHR$(127) Insert PRINTCHR$(21)
 Home PRINTCHR$(28) Clear screen PRINTCHR$(31)

VZ200/300 SYSTEM POINTERS AND VARIABLE STORAGE LOCATIONS

 POINTER or VARIABLE HEX LOC DECIMAL

 Top of memory (ptr) 78Bl/2 30897/8

 Start of BASIC program (ptr) 7BA4/5 30884/5

 End of BASIC program (ptr) 78F9/A 30969/70
 (also start of simple variable table)

 Start of dim. variables table (ptr) 78FB/C 30971/2

 End of BASIC's stack (ptr) 78AO/l 30880/1
 (also start of string variable storage area)

 Execute address for USR program (ptr) 788E/F 30862/3
 (note: high byte of address must go in 788F)

 Interrupt exit (called upon interrupt) 787D/E/F 30845/6/7

 Start of BASIC line input buffer 79E8 31208
 (buffer is 64 bytes long - 2 screen lines)

 Copy of output latch 783B 30779

 Cursor position 78A6 30886

 output device code 789C 30876
 (O=video, 1=printer, -1=cassette)

The contents of the BASIC stack pointer stored in 78AO/l are basically equal to the contents of the 'top of memory' pointer
stored in 78Bl/2, less a figure equal to the number of bytes reserved for string storage. The default value for string storage
space is 50 bytes; this can be modified from within a basic program by using the CLEAR command - ie CLEAR 1000 will
increase the string space to store 1000 bytes.

The VZ200/300 printer interface uses I/O port address OE Hex for the ASCII character code data and strobe output, and
address OOH for the busy/ready-bar status input (bit 0).

20

RESERVING SPACE FOR A MACHINE CODE PROGRAM

There are a number of ways to reserve memory space for a machine code program, from within a BASIC program. But before
details of these methods are given, we should clarify the way BASIC normally organizes memory space.

A range of addresses at the bottom of user RAM is reserved for system pointers and variables. This section is often termed the
communications region'. It includes locations which store pointers to the boundaries of the various regions in upper RAM, like the
'Top of Memory' pointer, the 'Start of BASIC program' pointer and so on. The latter pointer is stored at 78A4/5 Hex (30884/5
Decimal).

Normally the BASIC program itself is stored next, in locations starting at address 7AE9 Hex. At the end of the BASIC program text,
the system stores a table containing the program's variables. This is known as the 'variable list table' (VLT). This is divided into two
sections: first, the simple variable table containing simple numeric variables and pointers to the simple string variables, and second -
the subscripted variable table containing dimensioned variables.

As the BASIC program text changes in length, the VLT is moved up or down in memory so that it always begins from the end of the
BASIC program. The pointer to the start of the VLT is stored in location 78F9/A, and the pointer to the start of the subscripted
variable table in location 78FB/c.

The remaining major regions extend downward from the top of user RAM. Normally at the very top of RAM is the string storage
area, extending down from the top of RAM (pointer stored at 78Bl/2) by either the default figure of 50 bytes, or a different amount
established by the CLEAR N command. The BASIC interpreter's stack then extends downward in memory from the bottom of the
string area (pointer stored in 78AO/1). The space between the top of the VLT region and the bottom of the stack is not used, and is
designated 'free' space So that normally, the RAM organization looks like this:

2 1

METHOD 1: This method of reserving space for a machine code program involves shifting the BASIC program
area upward in memory from its normal start at 7AE9, creating a space immediately above the communications
region. The machine code program can then be loaded into this space, probably by POKEing it from your main
BASIC program.

Needless to say, the BASIC program area can only be shifted up before your main program is loaded into it (if it
were done afterwards, the start of the program would be lost). But the shifting is quite easy to do, because all
that is required is A) change the 'Start of BASIC program' and 'End of Program/Start of VLt' pointers, together
with B) creation of a new 'null program' at the start of the new program area.

This can be done quite easily from a small BASIC program which is fed into the computer ahead of your main
program. Here is what it looks like if you want to reserve say 128 bytes:

10 POKE 31593,0:POKE 31594,0:POKE 31595,0
20 POKE 30884,105:POKE 30885,123
30 POKE 30969,107:POKE 30970,123

Here, line 10 pokes a 'null program' of 3 zero bytes into the start of the new program area (which starts at 7B69H
or 31593). Line 20 pokes the decimal equivalents of the low and high bytes of this new starting address of the
program area into its pointer address, while line 30 pokes in the corresponding values for the EOP/VLT pointer.

Note that this shifting program 'self-destructs' - once you run it, the BASIC interpreter loses all knowledge of its
existence in memory. So if you then try to LIST or RUN, nothing will happen, because as far as the interpreter
is concerned, it now has nothing in its (new) program storage area.

Once the program has run, however, any BASIC program loaded will start at the new, higher address (here, 128
bytes up), leaving the space immediately above the communications area free for a machine language routine or
program.

Needless to say you can vary the above program to adjust the amount of space reserved. You'll need to change
both the values poked into the pointer locations in lines 20 and 30, and the poke addresses in line 10.

Don't forget that if you use this method, the 'reserving' program will have to be loaded an ' d run ahead of the
main program every time you want to use it. The reserving operation can't be done from within the main
program itself.

This is one disadvantage of this method; another is that it is not easy to load in your main BASIC program and
the machine language program directly from tape.

22

METHOD 2: With this method of reserving space for a machine language program,, you create the required space
in between the end of the main BASIC program and the start of the VLT, by shifting the VLT upward in memory.

This is simpler to achieve than method 1, because all that is required is to change the 'End of BASIC program/start
of VLT' pointer stored in 78F9/A Hex (decimal 30969/70). In effect, we 'fool' the BASIC interpreter into thinking
that the BASIC program is longer than it really is.

How do you work out this hew value for the EOP/VLT pointer? Probably the best way is to PEEK at the value of
the pointer when your main program is loaded in normally, and then add to this figure the amount you need for
your machine language routine plus a small amount (say 64 bytes) for a safety margin.

Let's say again you want to reserve 128 bytes. First load in your main basic program, then key in this command:

PRINT PEEK(30969) + 256*PEEK(30970)

The answer you get is the current value of the EOP/VLT pointer, in decimal. In other words it represent the actual
end of your BASIC program. So add say 192 to this (128 plus a saftey margin), to get the new EOP/VLT pointer
value.

Say the value you get is 32800. Now find the decimal equivalents of the high and low pointer bytes for this figure,
by keying in this line:

P=32800:PRINT INT(P/256),P-(256*INT(P/256))

The first number you get is the pointer high byte (in this case 128), while the second is the pointer low byte (here
32). obviously if you get a different value from 32800, key this into the above line to get the corresponding values.

Now all you have to do is fit these values into a pair of POKE statements at the very start of your main BASIC
program:

1 POKE 30969,32:POKE 30970,128

This line must be right at the start of your program, so that the EOP/VLT pointer is moved before the program
introduces or uses any variables. Otherwise the variables would be 'lost'.

This method allows you to load save and run the BASIC program normally, without any prior preparation. once
you have loaded the machine language program into the reserved space between the BASIC program and its VLT,
you can also save and re-load it along with the BASIC program.Note that the 64 byte 'safety margin' allows for the
small increase in program length when you add line 1 above.

23

Method 3: This method of reserving space for a machine language program involves changing the 'Top of
Memory' (TOM) pointer so that it points to an address lower than the actual top of memory. This forces the
BASIC interpreter to move its string storage area and stack downward, leaving a space for your machine language
program at the top. Like Method 2, this is quite easy to do and it can be done from within your BASIC program.

First, you need to PEEK the current value of the TOM pointer. This is found quite easily by:

PRINT PEEK(30897) + 256*PEEK(30898)

ie This will give you 36863 for a basic VZ200 (53247 for a VZ200 with 16k expanded memory).

Then you simply subtract from this figure the amount of space you want to reserve for the machine language
program, to give a new TOM address. Then it's simply a matter of poking the low and high byte figures for this
address into the TOM pointer, at the start of your program.

For example, say you want to reserve 256 bytes, and you have a basic VZ200 so the normal TOM is 36863. So
the new artificial TOM will be 36863-256, giving 36607. To work out the two new pointer bytes in decimal type
in :

T=36607:PRINT INT(T/256),T-(256*INT(T/256))

The first number you get is the pointer high byte (here, 142), while the second is the low byte (here 255). If you
have a different value of TOM (for the VZ300 for example), you will get corresponding values.

Having found these values all you need do is add the following line to the start of your program:

1 POKE 30897,255:POKE 30898,142

The pointer must be changed before the program uses string variables or the stack, otherwise the system could
'crash'.

Note that this method allows your BASIC program to be loaded, saved and run normally. However it does not
allow the machine language program to be loaded directly into the reserved area at the same time. The machine
code must be loaded either separately, or POKED into the reserved area by the BASIC program itself after the
pointer is changed.

FINDING THE TOP OF YOUR VZ200/300's MEMORY

This is somewhat more simple - type in the line:

PRINT PEEK(30897) + 256*PEEK(30898)

24

CALLING A MACHINE CODE ROUTINE FROM BASIC

The standard way of calling a machine language program or routine from BASIC is to use the USR(X) command.
But before this command can be used, the starting address of the machine language routine must be loaded into the
USR program pointer, stored at address 788E/F Hex (decimal 30862/3). This can be done using POKE
statements.

As it happens, the BEEP subroutine in the VZ200/300's BASIC ROM can easily be called to do this, using the
USR(X) command. The calling address for the routine is 3450 Hex, so the decimal figures for the USR pointer
bytes are 80 (low byte,equal to 50 Hex) and 52 (high byte, equal to 34 Hex).

So if you want to produce a 'beep' at various places in your BASIC program, all you need to do is put this line near
the start of the program (before the first beep is needed).

20 POKE 30862,80:POKE 30863,52

This sets up the USR pointer. Then, whenever a 'beep' is required in the program, simply use the command:

X=USR(X)

Note that before control is passed to the user routine at the designated address, the value of the argument variable
X is stored in locations 31009/31010 (7921/2 Hex). So this can be used to 'pass' a parameter value to the user
routine. If the routine doesn't need any parameters (like the 'beep' routine above), simply use a 'dummy' variable
name like X, as shown.

The same general technique is used for calling other machine language routines, whether they are located in ROM
or RAM. It's simply a matter of poking the start address of the routine into 30862/3, and then using the USR
command.

you aren't limited to calling a single machine code routine. You can call a number of routines in turn, simply by
poking each routine's start address into 30862/3 before you use the USR command to call it. Just remember to
POKE the right routine address into the pointer each time!

25

USEFUL ROM SUBROUTINES FOR ASSEMBLY PROGRAMMING

A. KEYBOARD SCANNING ROUTINE
The keyboard scanning routine resides at 2EF4 hex. This routine scans the keyboard once and returns. If a key is
pressed, the A register will contain the code for that key; otherwise this register will contain zero. Registers AF, BC, DE
and HL are all modified by the routine, so if the contents of these registers must be preserved they should be pushed onto
the stack before the routine is called. The following example shows how the routine would be used to wait for the
RETURN key to be pressed:

 SCAN CALL 2EF4H ;scan keyboard once
 OR A ;any key pressed ?
 JR Z,SCAN ;back if not
 CP ODH ;was it RETN key ?
 JR NZ,SCAN ;back if not
 ;otherwise continue

B. CHARACTER OUTPUT SUBROUTINE

A routine which outputs a single character to the video display is located at 033A Hex. The code for the character to be
displayed must be in the A register, while the character will be displayed on the screen at the position corresponding to
the current value of the cursor pointer. All registers are preserved. Here is how the routine is called to display the word
'HI' followed by a carriage return:

 LD A,'Hl ;load reg A with code
 CALL 033AH ;& display
 LD A,'Il ;same with I
 CALL 033AH
 LD A,ODH ;now load A with CR code
 CALL 033AH ;& update screen

C. MESSAGE OUTPUT SUBROUTINE

A very useful subroutine located at 28A7 hex can display a string of character codes as a message on the screen. The
string of character codes must end with a zero byte. The HL register pair must be set to the start of the string before the
subroutine is called. All registers are used by the subroutine. Here is how it is used:

 LD HL,MSG ;load HL with start of string
 CALL 2BA7H ;and call print subroutine

 MSG DEFM 'READY' ;main message string
 DEFB ODH ;carriage return
 DEFB 0 ;null byte to terminate

26

D. COMPARE SYMBOL (EXAMINE STRING) - RST 08H

A routine which is called using the RST 08H instruction can be used to compare a character in a string pointed to by the
HL register, with the value in the location following the RST 08H instruction itself. If there is a match, control is
returned to the instruction 2 bytes after the RST 08H, with the HL register incremented by 1 and the next character of the
string in the A register. This allows repeated calls to check for an expected sequence of characters. Note that if a match
is not found, the RST 08H routine does not return from where it is called, but jumps instead to the BASIC interpreter's
input phase after ' printing the 'SYNTAX ERROR' message. Here is how the routine is used to check that the string
pointed to by HL register is 'A=B=C':

RST 08H
DEFB 41H
RST OBH
DEFB 3DH
RST 08H DEFB 42H RST 08H DEFB 3DH RST 08H DEFB 43H ...

;test for 'A'
;hex value of A for comparison ;must have found, so try for ;hex value of '=' ;OK so far, try for 'B'

;now look for second ;finally check for 'C'

;must have been OK, so proceed
E. LOAD & CHECK NEXT CHARACTER IN STRING -- RST 10H

The RST 10H instruction may be used to call a routine which loads the A register with the next character of a string
pointed to by the HL register, and clears the CARRY flag if character is alphanumeric. Blanks and control codes 09H
and OBH are skipped automatically. The HL register is incremented before each character is loaded, therefore on the
first call the HL register should be set to point to the address BEFORE the location of the first string character to be
tested. The string must be terminated by a null byte.

Here is an example of this routine in use. Note that if it is used immediately after the RST 08H instruction as shown, the
HL register will automatically be incremented to point to the next character in the string:

 RST 08H ;test for
 DEFB 3DH
 RST 10H ;fetch & check next char
 JR NC,VAR ;will go to VAR if alpha
 ;continues if numeral

27

F. COMPARE DE & HL REGISTER PAIRS - RST 18H

The instruction RST 18H may be used to call a routine which compares the contents of the DE and HL register
pairs. The routine uses the A register only, but will only work for unsigned or positive numbers. Upon returning,
the result of the comparison will be in the status register:

 HL < DE : carry set
 HL > DE : no carry
 HL <> DE : NZ
 HL = DE : Z

Here is an example of its use. Assume the DE pair contains a number and we want to check that it falls within a
certain range

 - say between 100 and 500 (decimal):

 LD HL,500 ;load HL with upper limit
 RST 18H ;& call comparison routine
 JR C,ERR ;carry means num>500
 LD HL,100 ;now set for lower limit
 RST 18H ;& try again
 JR NC,ERR ;no carry means num < 100
 ;if still here, must be OK

 G. SOUND DRIVER

Located at 345C hex is a routine which can be used to produce sounds via the VZ200/300's internal piezo
speaker. Before calling the routine, the HL register pair must be loaded with a number representing the pitch
(frequency) of the tone to be produced, while the BC register pair must be loaded with the number of cycles
of the tone required (ie the duration in cycles). All registers are used. The frequency coding used is
inversely proportional to frequency, ie the smaller the number loaded into the HL register pair, the higher the
frequency. As a guide, the low C produced by the VZ200/300's SOUND command in BASIC can be
produced using the decimal number 526, the middle C using 529 and the high C using 127. Here is how you
would use the routine to get say 75 cycles of the middle C:

 LD HL,259 ;set frequency code
 LD BC,75 ;set number of cycles
 CALL 345CH ;& call sound routine

 H. 'BEEP' ROUTINE

The routine which is used by BASIC to produce the short 'beep' when a key is pressed is located at the address 3450
hex.
It disturbs all registers except the HL pair. To make a beep:

CALL 3450H ;make a 'beep'

28

I. CLEAR SCREEN

A routine located at OlC9 hex may be used to clear the video screen, home the cursor and select display mode (0). it
disturbs all registers. Again it is used by simply calling it.

CALL ;clear screen, home cursor etc.

J. PRINTER DRIVER

The printer driver routine is located at 058D hex. To send a character to the printer, load the chracter's ASCII code into
the C register and call the driver - After printing, the character code will be returned in both the A and C registers. All
other registers are disturbed. For example to print the letter 'A' (ASCII code 97 decimal), you would use:

LD C,97 ;set up code in C register CALL 058DH ;& call printer driver

A line feed character (OAH) is automatically inserted after a carriage return (ODH). If the driver is called with a null
byte in the C register, it will simply check the printer status and return with bit 0 of the A register either set or cleared.
The routine does check for a BREAK key depression, and if one is detected, it will return with the carry flag set.

K. CHECK PRINTER STATUS

A routine to check printer status is located at 05C4 hex. When called it loads the printer status (I/O port OOH) into the A
register and returns. Bit 0 will be set (1) if the printer is busy, or cleared (0) if it is ready. No other registers are
disturbed. An example:

 TEST CALL 054CH ;check is printer ready
 BIT 0,A ;test bit 0
 JR NZ,TEST ;loop if busy -continue if ready

L. SEND CR-LF TO PRINTER

A routine located at 03AE2 hex may be used to send a carriage return and line feed combination to the printer. No
registers need be set up before calling, but all registers are disturbed. If the break key is pressed while printing occurs (or
while the printer driver is waiting for the printer to signal 'ready'), the routine will return with the carry flag set:

 CALL 3AE2 ;go send CR-LF to printer
 jp C,BRK ;check if BREAK key is pressed
 ... ;apparently not

29

VZ200/300 DISK OPERATING SYSTEM (DOS) ANALYSIS

Information is included here to describe the operation and structure of the VZ200/300 DOS. The information will
cover the format of the diskette, the recording technique, the DOS entry points and the stucture of the DOS. It can be
used to allow direct assembly language access to the DOS, and also to allow advanced programmers to enhance their
DOS.

DISKETTE FORMATTING

The VZ200/300 DOS initializes the diskette into 40 tracks, with 16 sectors per track. They number from 0 to 39, track
00 being the outermost track and track 39 the innermost, The stepper motor (which moves the R/W-head arm) can
position the disk arm over 80 'phases'. To move the arm from one track to the next, two phases of the stepper motor
must be cycled. The DOS uses only even phases. Programmers may use this feature to generate protected disks by
using odd phases or combinations of the two, provided that no two tracks are closer than two phases from one another.
See the section on the disk controller I/O addresses for the control of the stepping motor.

The DOS subdivides the track into 16 sectors. It is the smallest unit of 'updatable' data on the diskette. The DOS reads
or writes a sector at a time. This is to avoid using a large chunk of memory for a buffer to read or write an entire track.
The DOS uses 'soft sectoring' to divide a track into 16 sectors without the use of the INDEX hole of the disk. Each
sector may contain 128 bytes of data, sectors are arranged into a 2-sector interleave sequence to reduce the access time.
The sequence of the sector arrangement is: 0, 11, 6, 1, 12, 7, 2, 13, 8, 3, 14, 9, 4, 15, 10, 5. Each sector is subdivided
into fields. See the following diagram for the structure of a sector and a track.

30

RECORDING TECHNIQUE

The VZ200/300 DOS uses the recording technique of FM (frequency modulation) to write data on the diskette. In
FM format, each data bit is enclosed within a bit cell. When data is read back from the diskette it takes the form of
the following diagram.

As the diagram shows, the data bits (if present) are interleaved. The presence of a data bit between two clock bits
represents a binary 1, the absence of a data bit between two clock bits represents a binary 0. The timing of each bit
cell is shown below:

In the DOS the length of each cell is 32.2uS with the data bit appearing 13uS behind the clock bit.

Due to the low signal transfer rate, the spindle rotation speed is reduced from 300 RPM (as in other drives) to 85
RPM to keep a high recording capacity.

THE STRUCTURE OF THE DOS

The DOS is a ROM based DOS which is located in 4000H to 5FFFH. When the computer is powered up, the
BASIC interpreter will jump to the DOS after initializing the BASIC pointers. The DOS will reserve a DOS
vector of 310 bytes at the top of memory available. The DOS vector is pointed to by the index register IY and this
vector is used to keep track of all DOS operations. Programmers should avoid modifying the IY register,
otherwise the DOS will probably crash.

31

The DOS vectors contain the following elements:

DOSVTR = IY
 NAME BYTES OFFSET

 FILNO 1 IY+O FILE#
 FNAM 8 IY+l FILENAME
 TYPE 2 IY+9 FILE TYPE
 DK 1 IY+ll SELECTED DRIVE# PATTERN
 RQST 1 IY+12 REQUEST CODE
 SOURCE 1 IY+13 SOURCE DRIVE FOR DCOPY
 UBFR 2 IY+14 USER BUFFER ADDRESS
 DESTIN 1 IY+16 DEST DRIVE FOR DCOPY
 SCTR 1 IY+17 USER SPEC. SECTOR NUMBER
 TRCK 1 IY+18 USER SPEC. TRACK NUMBER
 RETRY 1 IY+19 RETRY COUNT
 DTRCK 1 IY+20 CURRENT TRACK NUMBER
 NSCT 1 IY+21 NEXT SCTR NUMBER
 NTRK 1 IY+22 NEXT TRK NUMBER
 FCB1 13 IY+23 FILE CONTROL BLOCK 1
 OPEN FLAG, STATUS, FNAM, TRK#, SCTR#,
 ENTRY IN SCTR
 FCB2 13 IY+36 FILE CONTROL BLOCK 2
 OPEN FLAG, STATUS, FNAM, TRK#, SCTR#,
 ENTRY IN SCTR
 DBFR 2 IY+49 DATA BUFFER ADDRESS
 LTHCPY 1 IY+51 COPY OF LATCH
 MAPADR 2 IY+52 TRACK/SECTOR MAP ADDRESS
 TRKCNT 1 IY+54 TRK CNT FOR DCOPY
 TRKPTR 1 IY+55 TRK PTR FOR DCOPY
 PHASE 1 IY+56 STEPPER PHASE

DISK STRUCTURE

The DOS uses TRK 0, sector 0 to sector 14 as the directory. TRK 0 sector 15 is used to hold the track map of
the disk with one bit corresponding to a sector used. Each directory entry contains 16 bytes. Therefore 1 sector
can hold 8 entries and 1 diskette can have a maximum of 112 entries.

 File type 1 byte
 Delimitor (3AH) 1 byte
 File name 8 byte
 Start address 2 byte
 End address 2 byte
 Start track 1 byte
 Start sector 1 byte

32

DOS ENTRY POINTS

A jump table to the DOS subroutines is positioned at the fixed address from 4008H to 4044H. The jump table contains
the following elements:

 ADDRESS CONTENT DOS SUBROUTINE

 4008H JP PWRON Disk power ON
 40OBH JP PWOFF Disk power OFF
 400EH JP ERROR Error handling routine
 4011H JP RDMAP Read the track map of the disk
 4014H JP CLEAR Clear a sector of the disk
 4017H JP SVMAP Save the track map to the disk
 401AH JP INIT Initialize the disk
 401DH JP CSI Command string interpreter
 4020H JP HEX Convert ASCII to HEX
 4023H JP IDAM Read identification address mark
 4026H JP CREATE Create an entry in directory
 4029H JP MAP Search for empty sector
 402CH JP SEARCH Search for file in directory
 402FH JP FIND Search empty space in directory
 4032H JP WRITE Write a sector to disk
 4035H JP READ Read a sector from disk
 4038H JP DLY Delay mS in reg C
 403BH JP STPIN Step in
 403EH JP STPOUT Step out
 4041H JP DKLOAD Load a file from disk
 4044H JP SAVEOB Save a file to disk

DOS SUBROUTINES

PWRON
Turn ON the power of the drive selected in DOS vector IY+DK. To turn ON drive 1 , 10H should be written to
IY+DK. To turn ON drive 2, 80H should be written to IY+DK before calling PWRON.

Entry parameter: None
Exit parameter: None
Registers affected: A

PWROFF

Turn OFF the power to the disk. Both disks are turned OFF with the write request line set high at the same time.

Entry parameter: None
Exit parameter: None

Registers affected: A

33

ERROR

This subroutine reads the content of register A and prints the .error message before going back to BASIC.

Entry parameter: Error code in A Exit parameter: None

Registers affected: The subroutine will re-initialize the BASIC pointers and jump to BASIC.

ERROR CODE ERROR

0 No error
1 Syntax error
2 File already exists
3 Directory full
4 Disk write protected
5 File not open
6 Disk I/O error
7 Disk full
8 File already open
9 Sector not found
10 Checksum error
11 Unsupported device
12 File type mismatch
13 File not found
14 Disk buffer full
15 Illegal read
16 Illegal write
17 Break

RDMAP

Read the track map from the disk and place it.,into the address pointed to by IY+MAPADR.

Entry parameter: Disable interrupt Exit parameter: Error code in A

Registers affected: A, BC, DE, IIL

CLEAR

Clear the sector specified in IY+TRCK and IY+SCTR.

Entry parameters: Disable interrupt
Track number in IY+TRCK Sector number in IY+SCTR Exit parameter: Error code in A

Registers affected: A, BC, DE, HL

34

SVMAP

Save the track map in the address pointed by IY+MAPADR to track 0 sector 15 of the disk.

Entry parameter: Disable interupt Exit parameter: Error code in a

Registers affected: A, BC, DE, HL

INIT

Initialize a blank disk.

Entry parameter: None
Exit parameter: None

Registers affected: A, BC, DE

csi

This subroutine reads the user specified filename and puts into IY+FNAM if the syntax is correct.

Entry parameter: Input message pointed to by HL Exit parameter: Error code in A

Registers affected: A, BC, HL

HEX

This subroutine converts 4 bytes of ASCII pointed to by HL into DE reg pair.

Entry parameter: HL points to 4 bytes of ASCII
Exit parameters: Carry=l if error found, DE invalid

Carry=O if no error, DE=2 bytes of HEX HL advanced by 4

Registers affected: A, DE, HL

IDAM

Search for the identification address mark (IDAM) of the disk.

Entry parameters: Desired track in IY+TRCK Desired sector in IY+SCTR Disable
interrupt Exit parameter: Error code in A

Registers affected: A, BC, DE, HL

35

CREATE

Generate an entry in the directory.

Entry parameters: File name in IY+ENAM
 File type in IY+TYPE
 Disable interrupt
 Exit parameter: Error code in A

 Registers affected: A, BC, DE, HL

 MAP

Search for an empty sector in the track map.

Entry parameter: Track map in buffer pointed to by IY+MPADR
Exit parameters: Error code in A

Next sector available in IY+NSCT
Next track available in IY + NTRK

Registers affected: A, BC, DE, HL

SEARCH

Search for matching of filename in IY+FNAM with that in the directory.

Entry parameters: Disable interrupt.
 File name in IY + FNAM
 Exit parameter: Error code in A

 Registers affected: A, BC, DE, HL

 FIND

Search for an empty space in the directory.

Entry parameter: Disable interrupt
Exit parameter: Error code in A

Registers affected: A, BC, DE, HL

36

WRITE

Write the content of the buffer pointed to by IY+DBFR to the track#, sector# specified by IY+TRCK and IY+SCTR.

Entry parameters: Track number in IY+TRCK

Sector number in TRK+SCTR
Data to be written in buffer pointed to by IY+DBFR (128 bytes)

Exit parameter: Error code in A.

Registers affected: A, BC, DE, HL, BC', DE', HL'

READ

Read the content of track#, sector# specified by IY+TRCK and IY+SCTR into the buffer pointed to by IY+DBFR.

Entry parameters: Track number in IY+TRCK
 Sector number in IY+SCTR
 Disable interrupt
 Exit parameter: Error code in A
 Read data in buffer pointed
 to by IY+DBFR (128 bytes)

 Registers affected: A, BC, DE, HL

 DLY

Delay N mS specified by B.

Entry parameters: Disable interrupt

Number of mS to be delayed in B
Exit arameter: None

p

Registers affected: A, BC

STPIN

St - ep the stepper N tracks inwards specified by register B.

Entry parameters: Disable interrupt

Number of tracks to be stepped in B.
Exit parameter: None

Registers affected: A, BC

37

STPOUT

Step the stepper N tracks outwards specified by register B.

Entry parameters: Disable interrupt

Number of tracks to be stepped in B.
Exit parameter: None

Registers affected: A, BC

DKLOAD

Load the file specified in IY+FNAM to the memory.

Entry parameters: Disable interrupt
Filename in IY+FNAM

Exit parameters: Error code in A.
File in memory

Registers affected: A, BC, DE, HL

SAVEOB
Save the filename specified in IY+FNAM and pointed to by 78A4H to
the disk.
Entry parameters: Disable interrupt

Filename in IY+FNAM
File start address in 78A4H
File end address in 78F9H
File type in IY+TYPE

Exit parameter: Error code in A

Registers affected: A, BC, DE, HL, BC', DE', HL'

38

39

21

+ 5 v

Q TACK

R1 as 3 V; R11 PO 0.6

(go
orro‘
DP,'
PI
0,8
07
DtA4
MS
DM
pA 3
pP1

94

D9°

27

.47 	SV

21
II 8-I
10 p_y

A•VI DEO OUT

U12
6 	9

(11

Q I j 	

761 DR 01

15 	44 ■ 	cs.
+S+ . 	I 	(15 IS

LS174

+

	46-10-4-10 K) 	

4.706

	FICASS
OUT

4648
(0000-1FFF)

5 	ao 	(2000-3FFF)

, (6800-6FFF) (0

9

Triazi (7800-7FFF)

paivi (70041---77FF)

	 2
2

U3

I.5139

U2

RD

L532

RITE 6800-6FFF

	 L12
/3 	

READ 6800-6FFF

9
3 DD C P pe

1614148

+5V

(FOR PROGRAM RAMS
SEE

SUPPLEMENTARY
CIRCUIT)

(to prog
-0" RD 	RAM s)

x °D

N
NA

Nk Al V

N A3 4 4 1

D4

C 25

10#

6311

V

4.7k x 6

	

-t 	Ro

C34113/ 	,S 	0.1

54113-3
	

A 	B

2 5 Ri

0.4

8 - 9 6 25

0 	Y 	;1.4

k 	1. 	 PT

6 IS 4 g
LOS Oa 131 Moo

J1.2

DO 111 0: DO
14 	5
	

1 6 	11

3.3K
+5V R16 11/ FUI

1

0. AD

	CLK
9 	MREQ

134- R
29 6 21

•
INT

/00+' 0 049/
/CV I I

RESET

ZD

1

• $

24

19 DAIO
0 R9
	o A6

041
DA6
	DAS
	044

117
6116

DA. 	07' 17

0‘

04'
Df
DI
Di
D1

4s v

71197").
 IIS

As DRAM
.110. INT

fv64 7/G
Ale CSS c55

iNTIu
	Tis Ars

(.++10
/HY

<+(.41

Cr+,
0,4

U15 #g

6847 '1
1,1
DG
05
lyl
P3

ELK

1" 11

VIDEO _i_
CLOCK

IRIS

—1-11,14o K FT-.
-+Sv +9V IN
	PWR SW 	

7805

13
	

11

SHEET 1 OF 6

VZ-200 KEYBOARD, CPU, ROM, VDP
AND CASSETTE INTERFACE

3
.5

8M
H

z
T

O
 S

H
E

E
T

 2

U13
	

U13

5
4- AO,

A13 3 CC
05

	 An

	

,..154 Poo 	 Di
39 A9

	

Q12AS 	 DI
	Al U4 DO
" 	AIR2-80A
35 3315

5+ 34 ' 	1,A34;
CFSN

M I
31 pi

Mq
IORQ

LS245 	
IS 20 21

	

Is 91 	DI, 9 	—6

	

TM 	DI

	

oo, 	01

	

09 	DO

01
U14
 1,4

	

I1(DS

	

04 	Di

010.

D7'

,4317-----1 'OK

358Milz

—4-
LS00

141 21 UI
vot na

E) 	 a,

IJ18 a '9-
LS393

Q3

00

C.

9

.5v

i b> 4

7

68k E

I Jk

VIDEO 	330

BA 3/5 	2

1402D 	(>1 	

I 0 0 cv

VIDEO I
CLOCK I

330.. — 1011p

r
CHROMA IN • 	 r•

f511

lot

U20 4.3

15

LS390 '

cirr
I Sao

nR

4M0

/0

U19

d

Ls00

o C '

•
3.58MHz IN

+51,

1402B

13 	 S
II

FS 14
•	

-_J

1-1:5 U21 au

Lsne
MI

ni 14

4WD

VZ-200 VIDEO SYNC

SHEET 2 OF 6

—L 	—t 	 as,

4.1N 	Nu*

VZ-200 VIDEO AND CHROMA

SHEET 3 OF 6

• 1.2‘ T
002^

BOA

1k

4 13r--.

F- 100.

OA,
1.8k 1 8 k

390pF

cf. LS123

41-44

	1:1

39/a

TI VIDEO ENCODER

416 	46— 	

106 p 	09.1—

112f

a. 04,

120 pF
HR OM A

T
C H ROMA

OUT

151

D
20p

4.e

4.43MHz

—1

B—Y
•	

21k

	If 	

33p14

,IP•p

106p 	 66op

Is 	14

9

113A522

13 	16

12 Op

1402 2.1,2
look'

104n

loo k

TOP LEFT

P2
22

21

1

12

I I

l0

9

8
7

6

5

4
3
6
4
a
15
1E)

17

IS

19

20

A and

+5V

Al

Al

A3

A4

A5

A6

A9
Aio

D2

D7

PESET

RFSH

Ml

WAIT

NMI

RD

TRU

MEMORY EXPANSION CONNECTOR

FROM REAR

P I TOP RIGHT
— NC

2 	NC

3 	NC

16 	NC

11 	NC

18 	NC

20 — NC

4 	 +SV

19 J

t
30

18 	 AO

2(:) 	 AI

1

13 	 A3

11 	

i AS

11 	 Ab

19 	 Al

	 DO

	 D I

	 D2

6 	 D3

/I 	 D4

/2 	 D5

7 	 Db

23 	 D7

5 	 1(TR-0

	 RD

14- 	 wR

P2

	

34 	NC

	

4) 	NC

	

44 	NC

	

43 	t

	

23 	

	

24 	 Al I

	

25 	 Ail

	

26 	 Al3

	

21 	

	

28 	 AIS

	

35 	 AO

	

36 	DO

	

31 	DI

	

31 	D3

	

30 	D4

	

32 	D5

	

33 	D6

	

29 	CLK

	

38 	 INT

	

39 	HALT

	

40 	HERO

J 	Tik

VZ-200 I/O AND MEMORY EXPANSION CONNECTORS

I/O EXPANSION CONNECTOR 	
SHEET 4 OF 6

Me,
2

Din 	D. 44 	Do./
a

5 Ao s

a

U4

4116

" U5 Ul

4116 a. 4116

U3

4- 4116

OS U2
A• 4116

Sc

5 3

.2 3

2.2k •`'

• --.
U11

LS123,,

+5V

6

7.

U9
CS S

LS157"

<

DIN
•. DO

So

"--_2. "5 U6

4116

AS

5

995

AS.

Dw De ,

As,

4

U7

4116

5

2,_>
+5v - SY

WR • 	

R D 	

300

As

U8

4116

So, 500

'1 5-
/on

5 5V

V

04,e,

+12V

T
-'- 5005'

-

ma 	 r

U10

LS157

5 1.5

M: .3 1,c

2.2k

5

_ 1,900 re
•23

U14

LS74

CAS

RAS
•	
MREQ

) 337) 	■11>0 3
166 4 *

LINKS*
3*

	—0 5*

	—0 	2 *

4K 	 1 -- 2

6K 	 1 -- 3

SK 	 1 -- 4

12K 	1 -- 5

A0 —A15
	

D0 — D7
	

D 	 DS D4 	 DT

2.2k
+5V

t.

+9V IN

3 5113 	 213

WR

VZ-200 16K MEMORY EXPANSION MODULE

SHEET 5 OF 6

2
2

-173- 7“71
8 x

10pF

	

AO—A10 > 	

	

DO—D7 > 	

	

WR 	

	

RD 	> 	

78XX >

AO 	AA
Al 	Di
A2. 	33
43 	3
A4
402'63-
86 Z4
AI 41
038
4f 	4-4
8r4a u

/el

6116

88 	Do
Al 	

pi

Al 	Di

AS 36
6 	DA

A7 PT

A9 w
r0

18

6116

21

18

74LS138

MRE4 	 4
A14 > 	
A15> 	

A11> 	 U1'
Al2> 	 3
A13>

VZ-200 6K INTERNAL PROGRAM RAM

	

I ORQ > 	

A7 	

74LS 138 +5V

4.7k
4-

00,1w17
	 Ep 02 	 •

STROBE

E3

U2
Ao
Al

Az Q

10pF

	

A6 	

A5

	

A_4 	

	

R 	

	

J.° 		

	

) 	

	

2,3 		

	

.94 		

4,6
b7

4

U3 /

rs
'7
'L.

OE)7'

+5V 	 +5V

4.7k 	 4.7k

74LS33

I

	4 BUSY/READY

10pF

VZ-200 PRINTER INTERFACE

SHEET 6 OF 6

23

25

Type Number

VZ-300 KEYBOARD, CPU, ROM, RAM, VDP AND CASSETTE OUTPUT

9116
74 LS 04
GA3
280A
ROM
GA1
GA2
6847
6116

8 7 6 5 4 3 2

Al3

3H5 All - A15 AO Al 	A3 Al. 	A6

J2 	 22 W/P

MI 27

AP

Al0

A9

48

A7

011
AS

8.4

43

41

82

AO

A15 WNT
414

Al) 8uSREQ

VCC

16 INT 181
J2

18 wFfi

W M m315.8

0410

049

048
047

046

045

044

D6

D5

16 04

D3

AlA

50, 14

13

26

`5,„ 25

24
K., 23

lowA•Mi .09 1 OATE OEICRIPTV.

7

	3E4

/-
	/ \ 	

R14 NC
	20

25 	 VRWR 	 21

C59 C58 	RI9
D0274T0134T 	470

DI

DO

D8
F571,4--,

07 	H.4.485 2
3E5 	-141—t

•5V • 	
432
3K3 	

20

Al2

VCC 	All

A10

A9
A8

47

40 415

'6,64 434

DO AG

I 	412

2c4 CASS IN 37

3E4'7 36

31D5 	

101 3G5 C/17 34

Fir) 	5

WR 6

KDO D7

	

K01 	D6

	

IC2 	D5

	

KD3 	04

	

KD4 	D3

	

K05 	CV

DO

14
06

07

cg.
D2 	03

DI VRWR

DO 	VCC

K06 05

K07

P5
00

RD

WR 955

NC
23 	NC
24

17 	
NC

21 CSS

19 A/G

(A-4. 5v

22 	91.1Z I

16 BUZ 0

R20
8 10K

20

VCC

3M1

DA8 IE/S

047 	!NV

046

045

044

DA3 	FS

042 A/G

041 CSS

DAD

D7 	6A

D6 	89

D5 	MS

CLK

03

D2 	VSS

3612

3M0

EXT

74.168 120y.
6 3V

AENSION

'9 07

—D6 012
A6

45
6 04

	 5 G3
Ai

	 D2
A2

0
DO

VS0

17 	A8
29
	 MA2 	A'

MAI 46

MAO AS

5 RESET A4

	 13 UPO

07

D6

	1Q-- 03

avo
DA9

16

,5

29

34 07

32 26

9 	NC 	 8
21 -NC

	NC
37 INT

35 8/0

39 CSS

28 VIDEO 2,, 21,

" 	" 2F10
10 B-Y 2030

12 CiR IC,. 305

33 VIDRIff355

38 L-1S
3E5

27

30 .8-
3

\I

A

CMTIII. SNIFF

3

2 	7

)9

38 _7'

37

6

35

' 3 86 C-8 •J

q A5

44

A3

A2
AI W "1'14,

AO 0- S, 	 E

304- 	

2omponent Number

ill to FE

1,10
Lill
1'1 2

8 o13
111 4

1:1

110
!SHEET I OF 5

8
	

7 	 6 	 5 	 t 	 4 	 3
	

2

10

6

NC 	

82 44 	Al

mREG AO

RFSH

mA7 CAS

2° VSS CLK K

CLK FAL
SEL CLK

AS

AG

A3

A2

Al W

AO 1TAIS
D G

6 7 5 4 8 3 2 9

FOR PAL' V'

R • _

2H7
2E7

C65 	C81
00444 47uF

16V

2
0281

11 T

1"

X TAU
17 7344 7MHE

94
220

SWI

SVf-i ITT
948 3344K1
27 	

I6044
C76. C75 	

	

I
00u 	918
6V fi0--v--4.•5V

04
3 	II(

7 2 3 5 4 9 B 6 10

REVISION

OSICRIPTIOR REV IONE ONAW1.1 oRIN SAIS

r
J • LI

945
70 954

100K
3D 949

C61
nop

1404) 	

NI

960
47

LI PAL 	R33 	=
L 	

070 	069
aK 22,

100P 'OOP
'E 7

934
'OK

3E4 ""S'

-- (VW—

936

C .' -I-

)1

939
390

943
1K5

21(2

13

C66
100P

5

IN

2H7CNROMA
f 	

C63
120P

953
4K7

C64
220P

5W2
C 	B/W

0

IKS

R51
330

05
14020

D9 84315 • 2 010

077
00014

0

C

B

03
50

13 1 	50
'K2

3 4700P
1041

02
NA 31X

04 	 L3
1N4150 	 04441.4

101-4-3■—rrrY-1-4---4. 1 2V 	eo mc
-47P

94315
D2

11V
21

3

C30-1 1C29
101 T 00444
16V

92
220

• 5V

1.079

T°""

C 39

	T
004

16V 	06
12 	INM

EIFTE-§P

5V

•sv

RS
220

C43
100P

0 	13 	12

54

0

F

E

D

C

10

14

947
82K

A

47'

3E4 	EIS-E

• ' 2

2K
(R2

Cat „
QB

2
VI

R12
470

TO KEY BOAR

VCI
20

U9 	SYS
5 	6 C LK ,E7

FOR 280)

VI N

v C C

CH SELECT

VZ-300 CHROMA, VIDEO, RF, POWER SUPPLY

AND CASSETTE INPUT

a

A

10 	 8
	

5

11

J2

2 AE5F T

5V

410
3

A9

5

6

8

11

12

13

14

15

16

17

8

9

20

21

24

25

26

27

28

29

31

32

33

34

35

36

37

38

40

42

44

23

A8

A"

AS

A5

42 	

41

02

D7

NI

WA T

NMI

R0

1090

A1 1
C7E1

I 13V
412

All

414

A15

CLK

04
03

05

06

NC

AO

DO

01

HALT

HERO

1/T1P

NC

N

47uF
16V

• v

,7
A11- 015

•5V

	

A15 2 	 40

	

A14 3 	 39

013 4

	 6

35
ICI .1C4 	

VP

ICI V
-DP~ Z7

	

1TS30 	 2

1, J13

29

4/2

NC

NC ---

NC 	

1A8 1r°

148 11"f

CG rc

7

8

IN

NC 	

NC

NC 	2

NC 	3
1

NC - 	
6

IC

4 C83-47DI6V C5-004. 	0004 .C9 - 004D. FOR -5v CF
U1 THRU 138

3 C15-004u. C19-00414 C23- 004u , C - 47uF 16V , FOR •5V OF
Ul THRU U8

2 C82- 100uF16V , C16-004u C20-004u C24-004u . FOR •12V OF
U1 THRU U8

NOTE 1 FOR UI THRU U8, PIN 1 -59

PIN 8 .12V

PIN 9 +5V

91916 GND

-NC

-- -NC

- NC

NC
26 	

NC

4/2 24 --NC

2 	
NC

9_
	NC

	1C1.
28 if

07
25 BURST 2E,

22 951
2110

21 	I 	2E7 227

I HERO
1F8

VZ-300 CONNECTOR SYSTEM, VIDEO ADDRESS AND TIMING

SUf 11 3 	5

I 	8
	

7
	 6 	 5

	
4
	

2

._■ 15

VZ300 Technical Specifications:

Adaptor output voltage: DC 10V, 800mA with 2.1mm female plug.
CPU operating frequency: 3.54MHz

Video output signal: Composite signal, negative sync.
Pal system 4.43MHz, IV p-p level on 75 ohm load

RF output signal: Australian Ch 1, 57.25MHz, lmV level (75 ohm)

75

OG
_OR60

0109609
CD C. 7 7 MO OULATORO

SW2
Li 	RC7 Rc 41r-1,

iso 	litF",61±±)

5.

n

R35
FOE '83

L2
'F-.

	E 	 00
C7G R39 EE

;'

16
ct

R% 15
2

at
R592

1.1 	 12
■■••■■• 	 0 	0 CASSETTE 	PO PP

SW 1 	 C78 	C14

C 57
C82 	U1 	C83

0 0

C34 	 C 5

03

858
W2

C3 	 C,6 	U3

	

4° 0C39
0 	7

1 4 	C 7

Ca

0.3 • 	 C19

1 	 L

3 0 I= 0

.4 ' 6- Ce 	5 	
0 	

czo 	u5

,6 6969 0 	 002) == c9

RS

OQ CO—R13 	

.., 6

	

I C2 	U7
`I'ETTiTi 	-,, 0 g ,, E

0

till ill Ill 11111r1111111 1 E-f -:i -`,=', E, 55F, 	,48, u8

00000M0 Li

11

Dc1

c3or,
1.8 	03 ‘-'01
1=1

C7:3479

0
C

R23

428

`107. 7 --I—'OR AS 	fUNC, i WA
P4_ /

compc.r,F T DE

=

VZ-300 PCB COMPONENT LAYOUT

VZ-300 TROUBLE SHOOTING GUIDE

1) Raster on TV screen when power on

Adaptor 	< NO Vin-10V 	NO
	

Vcc=5V (NO

or Power Jack

YES
	

YES

7805
	

PCB Trace

31 	Wrong Pattern on TV

Wrong pattern of TV

YES NO U14 Waveform on pin Waveform on pin 21 of U16
25 of U14

YES

Waveform on pin 20 of U12 I 	NO

NO

YES

Raster on TV

screen

Is modulator

Pin=5V

YES

V

Modulator

Waveform on all pins of U4

Waveform on pin 18, 21, 22, 25,
27, 29, 31, 33, of U10

Yes

U10

21 White/Black screen on TV 	 4) Wrong/No color

White/Black screen on TV
	

Wrong/No color

Modulator
	

NO
	

Modulator Input is low or
without waveform

YES

Is waveform on pin 33
of U15

YES

Is waveform on pin 28, 11, 10

of U15

Q2, 03 and its related circuitry

Pin 15 of U10

Check the pin 6 of U17=12V

YES

Waveform on pin 2, 8 of U17

YES

A 1 	 NO

NO

NO

U15
	

NO

YES

Check 04, 05 and its related 	—1

circuitry

06, Q7 and its related circuitry NO 	I Waveform on pin 14, 15 of U23

YES

Waveform on pin 10, 11 of U15
	

NO
	

Waveform on p n 9, 13 of U23

	I YES

A
	

U13 k,
	

NO
	

Waveform on pin 25, of U13

YES

Check pin 1, 2, 3, 4 of U13 and its related
circuitry

NO 	rls waveform on pin 6 of U9

05, 04 and its related circuitry

YES

Turn the VR I, VR2 to the correct color

YES

Check the U13/pin 25, U10/pin 15,
U17/pin 5 and its related circuitry

5) Without sound
	

7) Keyboard malfunction

Without Sound 	
Keyboard malfunction

Transducer
	

YES
	

Waveform on Pin 22, 16 of U14

Waveform on 1, 19 of U12
	

NO
	

Waveform on pin 1, 2, 3, 4, 38, 39 of U14

NO
YES

U14
Keyboard Trace/ Jumper

	
NO
	

Waveform on Anode of D11 to 018
connector

YES

R6-R11 or 011 to D18

VZ-300 CASSETTE WAVEFORMS

6) Cassette I/O malfunction
	

CASSETTE OUTPUT SIGNAL

Cassette I/O malfunction 	 0

Pin 18 of U14 and its related circuitry
	

NO
	

KEY IN A PROGRAM. Key in "CSAVE"
	

P.P 200mV•1014

"RTN". CHECK WAVEFORM ON CASS.
0/P PIN

277MS 	 277MS
555MS -0- 555MS -.I

277MS 	 277MS

	

YES
	

166MS

Cassette recoder or cassette cord
	

NO
	

IS CASS. RECORD THE DATA?

	

YES
	 CASSETTE INPUT SIGNAL

Waveform on pin 11, 19 of U12, 05
	

NO Key IN "CLOAD" "RETURN". CHECK

and its related circuitry
	 WAVEFORM ON pin 37 of U14

	

YES
	 L,

P.5.1.5,0cf,f1.1

Adjust the volume and tone level of the
cassette.

4

C4
1 001410V
)1±- 	

UI UI

R5
27

,C5
-100410V

C8
100 uI0 V

R18
ERASE 	 1K

HEAD

R/W
HEAD

V 	•

C2
R lOulOV

C 3 	VV
0.033
MYLAR

3R
1K

R2
82

R21
1K

8 C17
100u10 V

U2 U2

R17
10K

1ci5

R6
10K

R7
220

C6 •
100410V

R16-
10K

R4
100

8

RI
3K3

.C1
I 0011.10 V

R11
100

R8
56K

100.110 V

R20
10

EAR

1802M 	R19
3K3

MIC
R9 	C7
10K 	10u.16V

RIO

R22
1K

03
NA32 XI POWER

R14
100

L.
REMOTE

LI
ImH 0.1

1702M

100416V

1402D

C12

. C10

T 220.110 V
. C9

220410V

RI3
220

L2
3 3uH

e D1
R15 	 C14
100 	1000.1--'

16V

C18
0.04

I N4001

• C13
474
10V

Q2

• C1I
T 220u1OV

Z I
BZX79C6V8

05
1702M

0.4

10K

UI 8 U2 = TDA2320A

VZ200/ 300 DATA CASSETTE

DATA CASSEM, PCB LAYOUP & WIRING DETAIL

0 1,0 	4
95.73

--*r
T IL 3

_L

+5 V

	1

“4

.51

A7

u3

5

77.

-Fm 744273

P 3

4.51

C
4 4

Fog Tk..siT1

U I

410
RI

at

3

De

-PT

Wr

De

0

95

414

91

P.

ty 5+

7 171

5 	

U Z

i5r

5

4

P• 	4

54 5

D.

„

8

[r —L.• ..—%1 	C9

_L

47 1
TCb rt. c,3

,••

3+

Ul 74LS138
U2 74 LS373
U3 74LS33

LATE VERSION PRINTER INTERFACE & LAYOUT

19

9

741 S 33

	

IORQ > 	

A7 	

%pi 	
U2

A0

Ai

+5 V

II 	 4.7k

U lb

STROBE

1
100p F

7415138

24
+5v

74L S 373
11

+5V

('4.7k

+5V

17
if

7

U3

/7

/6

It
is

2

4

po
	 ye

T 	
Di/
13'

	 • IAA
r

1 	 • .7>t

1 	 1 i 	-•-•)xl

tooPF

-5 	
I

BUSY/READY

	- Sy S

.°47T TIN)

VZ-200 PRINTER INTERFACE
(EARLY VERSION)

PI

5

4 ib

2

13

A3 	IZ 13

UP LEFT

UP

DOWW

LEFT Dow/

3.3 X F 6
RI

r -

1"P
3 —I—C2 Z CI

P1 tcv
+ 1.94

I°44.P.F
C

FIRE I 	 Buick
RIGHT

	 REP I Agf4

	 BLACK 2
F/ 	 LEFTT

RE-D2

RieNT

Rig4.11

ARM

oYST1CA 00ARP

rt
R4 RS

D-45
4 r

A 	
U

U3
I.

Ii 5
	

) 0 F x 5

A

C
Or 8 c

F R ED

(CI+)
Cl3

U 2

5 Fa
0-4 25

43 I.

3 A7

1 AG Ix

P)

VZ200/300 JOYMICK INTERFACE

fl
yolk

40

41v. 	 T
6 3v 120P 	T
crica cis

004,4 • 7

Ul 2764
U2 74LS138
U3 74LS32
U4 74LS244
U5 74LS164
U6 74LS138
U7 74LS125
U8 74LS273
U9 74LSOO
U10 74LS74

I I

AIS

2 A13

53

j_ 0 All

40-412

00-07

• ■■■•■

454 	 2

C711C22T

040.4
7."

So
0 	C3

UIO

CP 0
Co

36KISTCi7 C18 CO

TIT T

2
Jia 	 L9

16 RD DATA 	 3

1. 413709

36
AD

AI

Al.

AA) 	DD

AS 	oi
LAI

A6 	03

47 	04

48 	DS

A9 	06

410 	07
AQ

3

ro
Al

47

CO

DI 	44

AS

03 UI A6

A7

DS 	AS

06 	49

07 	410

All 	Al?

et 	 5)

All 4:1 .sv
JILL

Al I

u6

Is 10

T I

II 11_
Y3

•9 	14 NC
30 YS_ NC
9 16

NC
7 17

NC

r
7 1 	 00 3

4 	 4

6 	 2 7

6 	8' 	 DI 8

04 13

11 	33 	 DS 14

15 	 06 37

R2
31(3

f—N197:
13r

JI
ENABLE 1:::3

•

Hal

El7f4617C2

L_ 	
1.19

RI „) 	ItcK 	 0 0 6.. 3

12

7192 	 1.10

INPROT

Y1 	12 	CO

U10
J3 Ej cti, H cp 0

So

10

J3

.51/

V3

V7.200 /100 ilTCK rnmmTanT T VD

W200/300 DISK DRIVE

US

tl
WR PRO 	I1^12

US
3 	7

IK
FSV

RD DATA 1

R33

IJI RI6
047

18 F1/1/

lS
ti

ti

CIO

R8
FSY 	 4IPT 4 4

9K1 	C9 6
•--"AN—T31"--"

Do
7

R7 	CO
4K 7 	330P - 9

--"-^"---r P-----
9

FSV

TUDTC211C22

	

Olm 3 	R6
1

U311 	

r%- FS V

0(1 120(10
—•

7P6 y~ fir

	

DO 	

SI RI

UT

US
WR DATA 	 9 	8 DIN

U6
1

S 1K 0
1K 14

US
s 6

VYER6133-

rsv U6
2 >1

DOut 	10
511

WR REQ 5

C7
20K

C II
.00Im

com 4 U5 74LS125

	

Rti 11112 	 U6 ULN2003
270
	 P2L6

RI W 5

R/ WE

SHIELD

R30
470

7

R32
I H

Fir/

D
WRI 	

i

12
02

WR2

C19
01$

2

STEPPING .orca

IE
RBO B COMA

it 	LL

CON B 	'RED

TP1 In TP2

WY 470 IT 	
0 9 1 c 14 	R2 	 LI

c24T—I11 	C1 1----f.Y:fi-.-
coy 470 0.00N.11"

7 R31
I g

tSV

AC

	

CIS 	
C16

	

Tot 	"T 	
CI4
OW

LS
N

R9
ISK

16

t fa.
{3
04,

alm

4K7

VR I

R3
21K

Ul MC3470
U2 Ch3146

	

JS 	 U3 74LS14

	

ERASE 6 	 U4 NE592

U3
NC

R77
100K 	To TOP SHIELD &MOTOR SHIELD

C23
= OW

F SY

Pis

C17 	Cis
47w
ICV

3004

12Y

2 J3
••••••

13 	1_

11

F171/

13 	I

COMA

CON B
432
MARX J 021 +SY

RS
150

56o

U6

IC6 6E494- 74

52

DS

13

1--5* +Sv

L3
1m71
RC

820

	••SV

C6
.J..013)

U6
r

51

6

7 1

NC

4-1212 • 	

R29
810

3

rS
EN6L

J1

13

IS

17

'9

11

12

0

2 	

i

■6
C26
0W m

RI7
3K

IPS

1

V122
20K

NTR OUT

MTR ON

R3I 	C30
330 	IC/y.

(
16V
 •

3k 3

C33
22
soy

U 8

R36
120k

=CM
10.)
I6v

C29 	16020
10p
16V

R29
220
	Mh 	 412v

.76

R30
3143

Q4-
14o2D

D11
1N1.168

CDOS 444
14020

R34

C32

R33
K

TAC H IN

TACH IN

C25
00047). 	.0033p

07

R28
I I<

---C26
• 0 1 },

C27
100
16V

09 	 010

4

VZ200/300 DISK DRIVE MOTOR CONTROL

